
Simulation of Heterogeneous Spacecraft and Mission Components
through the Black Lion Framework

Mar Cols Margenet , Patrick Kenneally , Hanspeter Schaub and Scott Piggott
1 2 3 4

Paper No. #7

AAS John L. Junkins Dynamical Systems Symposium

College Station, TX

May 20–21, 2018

 Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder1

 Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder2

 Professor, Glenn L. Murphy Chair, Department of Aerospace Engineering Sciences, University of Colorado, 431 3

UCB, Colorado Center for Astrodynamics Research, Boulder, CO 80309-0431. AAS Fellow

 ADCS Integrated Simulation Software Lead, Laboratory for Atmospheric and Space Physics, University of 4

Colorado Boulder

American Institute of

Aeronautics and Astronautics

AAS 12-237

ATTITUDE STABILIZATION USING NONLINEAR
DELAYED ACTUATOR CONTROL WITH AN

INVERSE DYNAMICS APPROACH

Morad Nazari, Ehsan Samiei, Eric A. Butcher, and
Hanspeter Schaub

AAS/AIAA Space Flight Mechanics

Meeting

Charleston, South Carolina January 29 – February 2, 2012

AAS Publications Office, P.O. Box 28130, San Diego, CA 92198

AAS No. #7

SIMULATION OF HETEROGENEOUS SPACECRAFT AND
MISSION COMPONENTS THROUGH THE BLACK LION

FRAMEWORK

Mar Cols Margenet*, Patrick Kenneally†, Hanspeter Schaub‡ and Scott Piggott§

This paper describes the design and implementation of Black Lion, a purely software-
based modern spacecraft simulation and test environment, with the aim to perform
dynamic analysis of mission spaceflight software in a modular distributed simu-
lation framework. The simulation framework is architected to be highly config-
urable and modular, allowing for heterogenous software components across mul-
tiple computing platforms to be integrated into a single simulation. Note that this
includes integrating legacy software components that were never designed to be
integrated with other software components. This functionality is demonstrated by
simulating in software the flat-sat testing of a deep space spacecraft. Here Black
Lion provides the capability to start up and run the operational command and
telemetry databases, the unmodified flight software executable within a processor
emulation application, as well as simulate the physical response using the Basilisk
astrodynamics simulation framework. The later provides high-fidelity spacecraft
dynamic, sensor, actuator and environment models that are integrated in order to
test the flight software system in realistic closed-loop simulations. Simulation re-
sults demonstrate how a flat-sat scenario is simulated with software-only integra-
tion of stand-alone ground software and the flight computers on virtual machines.

INTRODUCTION

Black Lion (BL) is a communication architecture which enables a distributed software-simulation
(SW-sim) of a spacecraft system. Spacecraft software undergoes rigorous levels of integration and
validation testing of the complex mission behaviors. Besides testing the nominal functionality and
expected spacecraft behaviors, simulations are critical to test off-nominal behaviors where compo-
nents fail, sensor signals are corrupted and how ground contact communication periods are used
to analyze and address mission issues. While the BL SW-sim is being developed in order to sup-
port flat-sat testing for an ongoing interplanetary mission in which the Laboratory for Atmospheric
and Space Physics (LASP) and the Autonomous Vehicle Systems (AVS) laboratory at the Univer-
sity of Colorado Boulder are collaborating, the BL architecture is general enough to create a range
of distributed spacecraft simulations. Multiple software processes across heterogenous comput-
ing platforms can be integrated into a single BL simulation. This allows, for example, having a

*Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder.
†Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder.
‡Professor, Glenn L. Murphy Chair, Department of Aerospace Engineering Sciences, University of Colorado, 431 UCB,
Colorado Center for Astrodynamics Research, Boulder, CO 80309-0431. AAS Fellow.

§ADCS Integrated Simulation Software Lead, Laboratory for Atmospheric and Space Physics, University of Colorado
Boulder.

1

Figure 1. Virtualization of Spaceflight Components.

dedicated computer running a complex space environment model and another computer integrat-
ing spacecraft dynamics, both of them exchanging data dynamically through BL. Further, many
mission operations rely on software legacy components that were never design to integrated into
a larger simulation such as the ground communication system software, or the spacecraft flight
software itself.

Considering the flat-sat testing scenario, there are multiple mission components interacting with
each other: the ground system (GS), the single board computer (SBC) and its flight software (FSW)
algorithms, as well as spacecraft (SC) models to simulate the dynamics, kinematics and environ-
ment (DKE). In contrast, SW-sim testing uses virtual models or emulators in place of hardware
components such as the GS or SBC. The raison d’ être of a SW-sim is to provide a comprehensive
simulation testbed that is purely software-based. Figure 1 depicts the idea behind the virtualization
of the GS, the SBC and the spacecraft’s DKE. As illustrated, the GS emulator ingests the same
mission scripts as the real ground system and contains also the same command/telemetry databases,
while the SBC emulator runs the actual mission FSW.

The virtual models used in a SW-sim are usually pre-existent resources from the particular mis-
sion that the SW-sim effort is supporting. These virtual components are stand-alone applications
that are generally heterogeneous (written in different programming languages, nominally running at
different speeds, etc.). Therefore, a common communication architecture is needed to synchronize
exchange of data between the multiple nodes (virtual components).

The Black Lion communication architecture is designed to connect all the nodes of a distributed
SW-sim while being as transparent as possible to the internals of these nodes, such that different
mission users can plug-and-play virtual models. While the Black Lion effort is currently motivated
for a specific spacecraft interplanetary mission, the system is being built under the principles of
reusability and scalability, and the BL applications extend beyond the flat-sat example discussed
here. Examples of further BL applications include the integration of large clusters of spacecraft,
complex simulation components running on super-computers or cloud servers, as well as distributed
simulation of both spacecraft sensor and actuation systems.

The main purpose of a SW-sim is to test the onboard FSW executable, a complete binary image
that includes the FSW algorithms/application, the real-time operating system (RTOS), the Boot
software and the support package for the single board computer as illustrated in Fig. 2. Testing
the onboard FSW in response to dynamic stimuli in a spacecraft operational environment is also
one of the driving goals for flat-sat testing. While SW-sim testing does not replace flat-sat tests, it
can reduce bottlenecks by providing pure software substitutions for hardware components of limited
quantity that might be needed simultaneously for testing by different mission groups. This alleviates

2

schedule constraints by using software models only, providing a flexible and cost-effective means
of performing mission system testing early on in a mission program’s schedule.

Software-sim environments have long been used in the aerospace industry. Notable examples
of aerospace missions using a software-only test based approach are James Webb Space Telescope,
Space Launch System, Juno and OSIRIS-Rex. Different flavors exist of SW-sim architectures where
some groups are developing their own in-house solutions like NASA’s Operational Simulator en-
gine* while other groups may have acquired and maintain versions of Lockheed Martin’s “SoftSim”
to support verification and validation (V&V) activities. In general, simulators tend to be sophisti-
cated software products that are developed in parallel with the systems they are intended to test.
However, all SW-sims are meant to provide a common functionality: the ability to run the unmodi-
fied FSW executable in a software-only simulation environment.

Simulation software architectures take many forms and the characteristics of the architecture
strongly influence the functionality and therefore applications of the simulation tool. With some
generalization, simulation architectures can being characterized by the degree to which system com-
ponents are coupled. The coupling between simulation components is manifested by the simulation
structure, where the system may be integrated as a single system of required components, integrated
as a modular system with optional components or developed as a group of cooperative, yet stand
alone components.

An example of a system which has increased coupling between components is Advanced Solu-
tions Inc’s (ASI) Spacecraft Object Library in STK (SOLIS). SOLIS is a commercial plug-in to
the Analytical Graphics, Inc (AGI) Systems ToolKit (STK™) mission analysis software. The plu-
gin extends STK’s orbit and space environment dynamics with the On-board Dynamic Simulation
System (ODySSy™). ODySSy is an on-board spacecraft simulator providing additional models for
rotational dynamics, sensors, actuators, power and thermal dynamics, and basic spacecraft control
and guidance algorithms.1 Using both SOLIS and ODySSy from ASI provides end-to-end space-
craft simulation functionality. However, it does so by requiring those tools specifically. There are
minimal options to substitute one component with another which was not intended to operate with
the SOLIS system.

A software suite which demonstrates increasing modularity in its architecture is the NASA Jet

*https://www.nasa.gov/centers/ivv/jstar/jstar_simulation.html

FSW Algorithms

Controls

Guidance

Navigation

RTOS + Boot
SW

Board Support
Package

Figure 2. Binary Image Loaded to the Spacecraft (Onboard Flight Software).

3

https://www.nasa.gov/centers/ivv/jstar/jstar_simulation.html

Propulsion Laboratory’s Dshell system.2 The Dshell system avoids tightly coupled components
by establishing interconnections and communicating data between components via “connector sig-
nals”. Connector signals allow each component to provide data to other components without requir-
ing knowledge of the other components internals or availability.3 The Dshell suite of components
has grown since it’s initial development. Now, using the wide range of components developed for
the Dshell system, enginners are able to support a wide variety of simulation configurations includ-
ing both robotic and spacecraft simulation, software and hardware-in-the-loop testing and mission
telemetry visualization.4

The NASA Operational Simulator (NOS)* is a simulation system which exemplifies the charac-
teristics of a loosely coupled system architecture. The NOS system is a generic software-only simu-
lation architecture and was developed by NASA’s Independent Verification and Validation (IV&V)
Independent Test Capability (ITC). The NOS system achieves its flexible architecture by employing
a message passing middleware application to connect various simulation components by a virtual-
ized MIL-STD-1553 or SpaceWire messaging bus.5 This middleware approach allows users to add
or remove heterogeneous simulation components, unique to a particular spacecraft mission, without
needing to rewrite or recompile model or application code.6

The BL SW-sim in particular provides the capability to start up and run the operational command
and telemetry databases, as well as the unmodified flight software executable. Virtual models are
used for the ground system, the single board computer and for other required hardware components
like sensors, actuators and avionics. High-fidelity dynamic, kinematic and environment models are
integrated in order to test the flight software system in realistic closed-loop simulations. The scope
and coverage of the BL simulator involves assuring that the source code components can reliably
perform required capabilities under both nominal and off-nominal (i.e. faulted) conditions and that
the system’s responses are deterministic.

Whereas the functionality and coverage of the BL SW-sim overlap in parts with those pursued
by other groups, the novelty of the BL design is the system architecture. From the outset the ar-
chitecture was conceived as a distributed system. This distributed nature allows the BL system to
incorporate any node on any machine provided that a BL interface is written for the particular node.
The distributed architecture allows one to employ BL across a wide spectrum of simulation config-
urations. The spectrum’s extents can be defined as software only simulations to mixed software and
hardware node simulation configurations. Black Lion’s flexible architecture allows the system to
operate beyond the specific focus of a purely software flat-sat replacement and perform simulations
of various phases of a spacecraft’s mission. Two cursory examples of such novel simulation con-
figurations are a configuration which utilizes models executing on a high performance computing
facility and a configuration which incorporates hardware such as a LIDAR module being artificially
stimulated in a laboratory.

A guiding principle of BL development is to move away from highly expensive, specialized
products and focus on delivering scalable functionality and increased operational efficiency at a
faster pace and lower cost. In order to achieve this modern shift, the following directives are driving
the system design and implementation: 1) Use of open-source, cross-platform products, 2) Modular
architecture by initial design and 3) Agile software development.

The paper is outlined as follows: first, there is a preamble introducing the FSW application that
is the central target of the BL SW-sim testing. Next, the different components to be included in the
SW-sim are defined. The following section addresses communication aspects between the different

4

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Figure 3. Spacecraft Models and FSW Application Developed within Basilisk (BSK).

nodes, covering: node heterogeneity, communication goals and introduction of the BL architecture.
Then, there is a special section focusing on the adoption of modern software technology and its role
in the BL development effort. The next section explains the strategies for both the data transport
(socket patterns, connections, etc.) and node synchronization. A brief section then highlights the
capability of BL to run as a distributed machine system. Finally, some concluding remarks are
provided and a road-map for future work is included.

PREAMBLE: THE FSW ALGORITHMS AND APPLICATION DEVELOPMENT

The collaboration between LASP and the AVS laboratory encompasses developing GN&C algo-
rithms for different mission profiles. In order to develop these algorithms a parallel development
effort has produced a general software astrodynamics framework aimed at serving as a testbed for
prototyping and testing. This astrodynamics framework is named Basilisk (BSK)* and is currently
available as an open-source product.7 BSK leverages Python’s ease-of-use as a testbed for FSW de-
velopment provided that the spacecraft models and the flight algorithm code are written exclusively
in C/C++, and then automatically wrapped into Python for simulation setup, analysis, and testing.
The architecture of the Basilisk software framework is depicted in Fig. 3. As illustrated, the BSK
simulation system is decomposed into two main blocks: a high-fidelity simulation of the physical
spacecraft written in C++ (“SC Models” in Fig. 3) and a GN&C algorithms suite written in ANSI-C
(“FSW Algs.” in Fig. 3). All BSK modules are developed in a modular architecture using C, C++
and Python coding languages that communicate with each other through a custom message passing
interface (“MPI” in Fig. 3). In the general case, the FSW algorithms are written exclusively in C as
per requirements of spacecraft missions.

The BSK desktop environment is used to construct and test different modes of the FSW applica-
tion until the required functionality is achieved. At this point, the task, parameter, and state config-
urations are migrated out of the Python environment and embedded onto an actual flight target. The
flight target could be either a specific processor and RTOS or a middleware layer like NASA’s core
Flight System (cFS). Targeting middleware is advantageous in that ensures portability among dif-
ferent processors and RTOS. Reference 8 discusses the ease of transition from the Basilisk desktop
environment into a cFS application, ready to be embedded onto an SBC running a standard RTOS.

*http://hanspeterschaub.info/bskMain.html

5

http://hanspeterschaub.info/bskMain.html

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

SBC Emulator

FSW App

Figure 4. Spacecraft Models in BSK and FSW Application Migrated to a Flight Target.

Figure 4 showcases a system where the FSW algorithms are integrated within cFS, which in turn run
on an RTOS inside an SBC emulator. A virtual SBC would be used in a SW-sim, while a physical
SBC would be used in a flat-sat system. Figure 4 illustrates that the communication between the two
separate systems happens through a TCP connection, allowing the different components to run on
different computers. While References 8 and 9 showcase specific strategies to enable peer-to-peer
communication between BSK SC models and a given FSW application, the BL SW-sim can now be
used to provide greater flexibility by facilitating and routing communication between an indefinite
number of peers.

EXPANSION OF SIMULATION MODULES TO MULTIPLE COMPUTER NODES

Once the GN&C flight software application is determined, the next step is to expand the software
simulation coverage by simulating multiple spaceflight components in order to allow simultaneous
and rapid iterative testing from multiple engineering groups. The right hand side of Fig. 5 illustrates
the different heterogeneous legacy and new mission specific components that are to be included in
the distributed BL SW-sim. As depicted in Fig. 5, the initial system with only the FSW applica-
tion and the SC models is expanded to include: a GS virtual model, an SBC virtual model and a
visualization tool.

Ground System Emulator: Includes the command and telemetry databases, and runs the same
mission scripts/sequences as the physical GS. It sends commands out and receives telemetry
back, all in the form of Consultative Committee for Space Data System (CCSDS) packets.
An example of GS emulator is the open-source COSMOS software application.*

Virtualized Single Board Computer: It contains the unmodified FSW executable for the mis-
sion, which runs on a standard Real-Time Operating System or RTOS. The Single Board
Computer or SBC emulation includes also Field Programmable Gate Array (FPGA)-like reg-
isters. In this case, the actual FPGA registers are emulated/replaced with a memory map for
input/output of raw binary data. An example of a processor architecture and system emula-
tor, which is used to emulate the SBC is the open-source QEMU.† The BL SW-sim currently
makes use of a slightly modified version of QEMU.

*http://cosmos-project.org
†http://qemu.org

6

http://cosmos-project.org
http://qemu.org

Single Board Computer
Emulator (e.g. QEMU)

FPGA
Registers

CFS

FSW
App

Ground System Emulator
(e.g. COSMOS)

TelemCommand

GS Mission
Scripts

Spacecraft Models
(e.g. BSK)

Sensors

Actuators

PCU

Dynamics

Kinematics

Environm.

Visualization
(e.g. Unity)

CFS

Controls
Guidance
Navigation

BSK

SC Models(C++)

Environment
Kinematics
Dynamics

FSW App

Figure 5. Expansion from GN&C Testing to an Integral SW-Sim Testing Environment.

Spacecraft Models: The BSK simulation framework is used for both high-fidelity DKE models
and hardware component models. The hardware component models include sensors (gyro,
star tracker, coarse sun sensors, etc.), actuators (reaction wheels, attitude control thrusters,
orbit control thrusters) and the power control unit (PCU). Jointly, the DKE and hardware
models allow testing of other nodes in closed-loop dynamics simulation.

Visualization: a graphical user interface (GUI) is being developed with the Unity* game engine.
The GUI shall visually reproduce the spacecraft physical behaviors, which in this case are
determined by the BSK simulation. Reference 10 describes the GUI under development that
is going to communicate with BSK using the BL message transport protocol.

COMMUNICATION BETWEEN THE COMPONENTS

Recall that the nodes in the SW-sim are stand-alone applications that are initially unaware of any
other nodes. They are written in different programming languages, wrap their internal data using
different structures or packet types, and run at different speeds.

The differences between the particular nodes currently used in BL are highlighted in Fig. 6. As a
quick recapitulation, the GS modeled is written in C++ that uses CCSDS packets with a particular
data format. The SBC emulator is based on the open-source product named QEMU. It is written in

*http://unity3d.com

7

http://unity3d.com

BL Ground System Emulator
C++

BSK (Spacecraft Models)
Pyton/C++

Unity GUI
C#

CCSDS packets CCSDS packets

QEMU (SBC Emulator)
C/C++

BSK packets BSK packets

Unity variables

raw bin data raw bin data

Figure 6. Heterogeneity of Programming Languages and Internal Data Packets in the BL SW-Sim.

a combination of C and C++, and deals directly with raw binary data. The SC models are simulated
within BSK. While the BSK source code is written in C++, the application’s interface with the
external world is Python. The BSK packets are C++ defined structures that come along with a
message header. Finally, the Unity-based GUI is written in C#. The challenge for BL is to integrate
these heterogenous components while maintaining synchronous operation of the modules.

The heterogeneity between the multiple components drives the need for a dedicated communica-
tion architecture. The term communication, as understood here, involves the multiple goals:

1. Transport of binary data between nodes

2. Serialization of binary data because each node must know how to convert the received bytes
into structures that can then manage internally

3. Synchronization of nodes to keep all the nodes in lock-step during the simulation run

4. Dynamicity in the connections map to allow a more flexible simulation environment that is
minimally dependent on static components (the less static, or strictly required, pieces there
are in the communication network, the better).

The goal of BL is to achieve the described communication targets while being completely trans-
parent to the internals of each node. This enables such that users to plug and play their models of
choice, while having the flexibility to add/remove other nodes because they are not static pieces in
the communication map. To this end, the BL architecture depicted in Fig. 7 is comprised of a single
central controller and two APIs that are attached to each node.

BL Central Controller: The one and only static piece in the network (i.e. it has a static IP address).
The central controller acts as a master in the synchronization of nodes and as a broker in the
transactions (exchange of data) between nodes.

Delegate API: This interface component manages sockets and direct connections with the central
controller. It is the same script attached to all the nodes. The Delegate class is currently
implemented for Python nodes and for C++ nodes.

Router API: This is a generic class with node-specific callbacks to create a custom interface to a
legacy or newly developed mission simulation component. Its purpose is to route data in and

8

SBC Emulator +
FSW

Router API

Delegate API

Central Controller

Spacecraft
Models

Router API

Delegate API

Ground System
Emulator

Router API

Delegate API

Visualization

Router API

Delegate API �
�
�

GERMAN

Translator

Communicator

English
Conversation

FRENCH

Translator

Communicator

ITALIAN

Translator

Communicator

CATALAN

Translator

Communicator

�
�
�

�

Figure 7. Communication Architecture: Central Controller, Delegate APIs and Router APIs.

out of the internals of the node. For instance, when routing out, the Router API gathers the
node internal data, translates the data into a standardized BL system format, and then passes
the data to the node’s Delegate API, who is ready to ship it across the BL communication
network.

In order to explain better the idea behind the given architecture, one can use a human language
analogy: each node is an individual that speaks a different language, as illustrated in the right
hand side of Fig. 7. The router acts as a translator from the individual’s language to a common
standardized language, like English in the case of Fig. 7. Once the Router has translated the data,
the Delegate communicates over the sockets. The final result is an English conversation in which
each individual does not have to learn the particular languages of every other participant in the
conversation.

ADOPTION OF MODERN SOFTWARE TECHNOLOGY AND TECHNIQUES

Before moving into the details of the communication hub, it is interesting to step back and em-
phasize the modern technology and techniques that are critical to the BL effort. BL takes advantage
of the following open-source, cutting-edge software technologies:

ZeroMQ Message Library: high-performance asynchronous messaging library, aimed at use in
distributed or concurrent applications.* It allows the transport of data to be fast, reliable and
protocol independent. The ZMQ interfaces are available in a wide range of programming
languages, which can perfectly interact with each other.

Google Protobuffers: Google’s language-neutral, platform-neutral, extensible mechanism for se-
rializing structured data (like XML, but smaller, faster, and simpler) †. The user defines the

*http://zeromq.org
†http://developers.google.com/protocol-buffers

9

http://zeromq.org
http://developers.google.com/protocol-buffers

structure of the data once and then it is possible to use special generated source code to easily
write and read the structured data to and from a variety of data streams and using a variety of
languages.

In terms of techniques, the BL software is being developed in a component-based (modular) ap-
proach where nodes are gradually integrated one by one. Further, it is very easy to swap pieces, add
new ones, or remove existing ones to perform different kinds of testing. This gradual escalation is
granted by having a dynamic architecture, where the central controller is the one and only static
piece (i.e. server) and the nodes are dynamic clients that can come and go on the fly. Moreover, the
software is built through what is known as agile development, which implies continuous delivery
to mission users and immediate integration of the feedback received - resulting in very fast build,
testing and deployment cycles.

DATA TRANSFER AND SYNCHRONIZATION

Socket and Connection Definitions

In order to understand how the communications hub works, it is critical to explain upfront the
socket types and connection types used in the system. Two types of ZMQ-socket patterns are used
to transport data: the request-reply pattern and the publish-subscribe pattern. The publish-subscribe
pattern is applied in two different flavors, as described next:

Request (REQ) - Reply (REP): the central controller has a REQ socket for each node instantiated
in the simulation that is used to make requests. In turn, each node has a REP socket that
receives and parses the request, performs the commanded task, and replies back indicating
accomplishment.

Publish (PUB) - Subscribe (FRONTEND SUB): Every node has a PUB socket to share its own
internal data by publication. In turn, the central controller has a frontend with a SUB socket
that subscribes to the publications from all nodes.

Publish (BACKEND PUB) - Subscribe (SUB): Additionally the central controller has a SUB-
frontend and a PUB-backend. The messages received at the frontend are internally routed
to the backend, which then re-publishes the data. In turn, each node has a SUB socket that
subscribes to the messages of interest coming from the controller’s backend.

The relationship between sockets just described is exemplified in Fig.8. The figure depicts the
central controller in the middle and two sample nodes highlighted in magenta and blue. As shown
in Fig. 8, the sockets are encapsulated by the Delegate API.

Now that the socket types are defined, the connections of these sockets to a given IP address and
port is discussed. All the socket connections in the system fall into either one of these categories:
static connection (i.e. binding type in ZMQ terms) or dynamic type (i.e. connecting type in
ZMQ terms). The static connections are all associated to sockets in the central controller, while
the dynamic connections are associated to the sockets in each of the nodes’ Delegate API.

Central Controller: it is the only static piece in the network thanks to the frontend-backend (bro-
ker) approach. The controller acts as a server in the sense that it binds to a static IP address.
Within the same address, it uses a total of (2 + N) ports, where N is the number of nodes

10

instantiated: One port for the frontend, one port for the backend, and a command port for
each of the node-request sockets.

Nodes’ Delegate API: through the delegate API attached to each one of the nodes, the nodes be-
come dynamic clients that can come and leave without bringing down the rest of the system.
This dynamicity is reflected in the fact that the nodes only connect to an address and port,
rather than bind.

Through the described strategy, the server is always required and the clients are independent entities
that do not intrinsically rely on each other. The use of ZMQ also allows all the connections to
be protocol independent (TCP, IPC, etc.). The idea of socket binding (static nature) versus socket
connecting (dynamic nature) is illustrated in the topology showcased in Fig. 9. The figure also
reflects the fact that there is only one IP address in the entire BL system and within this address
multiple ports are used. As before, the figure displays the central controller (server) in the middle
and two sample nodes (clients) highlighted in magenta and blue colors.

Request-Reply Communication between the Controller and the Nodes’ Delegate

The requests from the Controller to the Delegate on each node are not spacecraft commands,
but rather they are communication and synchronization commands exclusive to the SW-sim. In
the current BL implementation, the controller can make 5 type of requests, some of which come
in the form of multi-part messages. Firstly, there is the “Initialize” request, which is a multi-
part message containing the “Initialize” signal, the controller’s frontend address and port and the
controller’s backend address and port. The actions taken by the node when this request is parsed are:
self initialization, connect its pub-socket to the controller’s frontend and connect its sub-socket to
the controller’s backend. Secondly, there is the “Provide Desired Message Names” request, which
instructs each node to report all the message names to which the node wishes to subscribe. Thirdly,
there is the “Match Message Names” request, which is multi-part message with the ”Match”
signal and a set of all the message names that the other nodes have asked for. The node returns back
a reduced list with the message names for which it has found an internal match. Then, there is a
“Tick” request, which is used at every time-step of the SW-sim run for synchronization purposes
and it contains the time duration of the next time-step (i.e. �t). Once the node has accomplished all
the tasks, it sends back a “Tock” reply. Eventually, there is the “Finish” request, which is a signal
for the node to close the sockets, clean up and shut down.

Central ControllerDelegate

BACKEND PUB

FRONTEND SUB

REQ REP

PUB

SUB

Delegate

REP

PUB

SUB

REQ

Figure 8. Socket Patterns between the Central Controller and Sample Nodes.

11

ServerClient

bind
backend_port

bind
frontend_port

connect
cmd_port_1

connect
frontend_port

connect
backend_port

Client

connect
cmd_port_2

connect
frontend_port

connect
backend_port

bind
cmd_port_1

bind
cmd_port_2

Figure 9. Socket Connections Types (Binding vs. Connecting) and Ports.

Tick-Tock Synchronization

Three actions or tasks happen in sequence inside each node between the parsing of a “Tick”-
request and the sending of a “Tock”-reply: publish, subscribe and step simulation forward. Note
that these three actions are node internal calls triggered by the ”Tick” request. Figure 10 depicts
the sequence of interactions and actions happening between the central controller and a sample
node highlighted in magenta. In Fig. 10, the words written in white imply interactions between the
controller and the node whereas the words written in magenta indicate node internal calls.

Publish: In the publish internal call, the node’s Router collects the application internal data and
makes it available to the node’s Delegate to publish to the controller’s frontend.

Subscribe: In the subscribe internal call, the node’s Delegate receives external data coming from
the controller’s backend and hands the data to the node’s Router, who is responsible for writ-
ing these messages down into the internals of the node application.

Stem Simulation: In general terms, the step simulation internal call implies executing the node’s
application during �t in order to generate new data. Recall that �t is a message part of
the “Tick” request sent by the controller. Having said that, there are nuances in the precise
meaning of “step simulation” for nodes that are synchronous (i.e. run in cycles, like FSW or
the spacecraft simulation) and for nodes that are asynchronous (i.e. are event-based, like the
ground system)

Because each node is an independent process that runs at a different speed, the “Tick-Tock”
signal ensures that all of them are in lock-step. Let us recall the particular four nodes that are
being integrated in the BL system: the SBC emulator, the SC simulation, the GS emulator and the
visualization GUI. Figure 11 depicts the synchronous nature of the SBC and SC simulation nodes,
the asynchronous nature of the GS emulator, and the listener nature of the visualization node.

Both the SBC node and the SC simulation node are synchronous in nature in the sense that
they run in cycles or at predefined rates. Because the FSW executable is running inside the SBC
emulator using a RTOS, the speed of the FSW execution is real time. In contrast, the SC simulation
runs natively faster than real time. For the synchronous nodes, the “step simulation” call implies
running as many cycles as there are within �t before exchanging data again with the rest of the
system. If one node finishes simulating �t earlier, it sends the “Tock” reply and waits for a new

12

Figure 10. Node Actions between a “Tick-Tock”: Publish, Subscribe, Step Simulation.

TICK TICK

SBC Emulator + FSW
synch (real time, RT)

Router API

Delegate API

Central Controller

Spacecraft Models
synch (faster-than RT)

Router API

Delegate API

GS Emulator asynch

Router API

Delegate API

Visualization
listener

Router API

Delegate APITOCK TOCK

TOCK TOCK

TICK TICK

TlmCmd

Figure 11. Nodes’ Timely Nature: Synchronous, Asynchronous and Listener Behaviors.

request from the controller. Because the controller will not proceed until it has received all the
“Tock” signals from all the nodes, the SW-sim speed is naturally driven by the slowest component.
In contrast, the GS node is asynchronous: the sending of spacecraft commands and the receiving of
telemetry are discrete-time events. The GS also receives a “Tick” command because the exchange
of data still happens simultaneously between all the nodes. The asynchronous nature of a node,
like the GS, demands a special treatment of the Delegate and Router APIs: the communication
through the APIs must happen at a different thread from which the main application is running. The
Visualization node is another case on its own: it can be simply regarded as a “listener” governed

13

by the SC simulation. Therefore, it only subscribes to the SC simulation messages and, within the
“step simulation” call, its job is to show the spacecraft timely evolution according to the received
set of messages.

MULTI-MACHINE FUNCTIONALITY

On a final note, BL is capable of running as a distributed system architecture with multiple ma-
chines, different operating systems, talking to each other. Interestingly, this multi-machine func-
tionality has come out-of-the-box thanks to using modern SW technology such as ZMQ. It is da
facto that the BL SW-sim can perfectly run all the nodes within the same computer, provided that
the computer has enough capacity to handle all the concurrent applications.

NUMERICAL SIMULATION

The following BL numerical simulation showcases a distributed-system run with three different
nodes: the Basilisk spacecraft physical simulation, the SBC emulator running the mission FSW
executable and the Ground System virtual model. The Black Lion Central Controller is also present
to synchronize the nodes and act as a message broker between them. The distributed simulation
setup operating across three computers running different operating systems is depicted in Fig. 12.

BLACK LION
Central Controller

(Python)

BSK SC Models (Py/C++)

SBC Emulator (C/C++)

RegistersCFS

FSW
App

IOB 1

IOB 2

IOB 3

SBC

GS Emulator (C++)

Commands Database

Telemetry Database

TCP

TCP

TCP

User: bootstrap the entire
system at once

User: send commands and
monitor telemetry on the fly

Figure 12. Nodes in the Integral SW-Sim Run.

System Initialization

The computer that runs the Central Controller is the host (unique element in the system with static
IP address). Black Lion currently has the capability to simultaneously initialize and configure the
Central Controller and all the nodes that are running on the same machine (i.e. nodes that don’t
require to SSH elsewhere). In the setup depicted in Fig. 12, the Central Controller is initialized
and configured together with the BSK node. The FSW-SBC emulator and the GS are initialized
independently when they run on different computing platforms, and the only argument they each
need is the TCP address of the Central Controller and the specific port on which to bind. From this
point onwards, all the setting, configuring and handshaking of nodes is accomplished automatically
through the Central Controller’s logic without further user interaction.

14

Node Configurations

Next the particular configuration and application of each node in the showcased simulation is
explained.

Basilisk Node Configuration. The Basilisk simulation is configured in an scenario where the
spacecraft probe has just separated from the launcher after leaving Earth. The simulated true attitude
and rate of the spacecraft are set to the following values:

�B/N (t = 0) = [0.4, 0.2, 0.1] (1a)

!B/N (t = 0) = [0.0, 0.0, 0.0] (1b)

where �B/N is a Modified Rodrigues Parameter or MRP based attitude description,11–13 and !B/N

is the inertial angular velocity. Hardware components modeled in Basilisk that are relevant in the
present simulation include a set of four reaction wheels (which are used to control the spacecraft)
and a dual-headed star-tracker (which provide attitude and angular rate measurements).

Ground System Configuration. The virtual GS contains a complete mission suite of command
and telemetry databases. The model is used dynamically by the GS user during the Black Lion run
to send commands (manually or scripted) on the fly and monitor telemetry. In the specific scenario
showcased here, the GS user places two commands. In the presented simulation the first command
issued to the FSW places FSW into a monitoring mode where the spacecraft monitors states and
reports back the requested states telemetry. The second command encompasses the performance of
a maneuver: driving the spacecraft to coarse sun pointing.

FSW Configuration. The FSW executable runs as a CFS application on an RTOS in the Single
Board Computer emulator. Four registers are emulated from/to which FSW reads/writes data. These
register devices are the SBC register and three different Input/Output Breakout device registers
(IOB1, IOB2 and IOB3). Each register stores in memory different data packets. For instance, when
commanded to, FSW writes reaction wheel voltage commands for wheels 1 and 3 to the IOB1 and
voltage commands for wheels 2 and 4 to the IOB2. The IOB3 register is where star tracker sensor
data is stored when it becomes available for FSW to read. Finally, the SBC register stores the uplink
commands for FSW to pick as well as the downlink telemetry for ground to process.

Simulation Run

The simulation starts and all the nodes begin to step forward in lock-step. The communication
exchange happens once every node has executed for �t = 0.1 seconds of virtual time. The total
simulation time is 10 virtual minutes.

Throughout the simulation, BSK produces true data of the spacecraft states and, based on that, the
modelled hardware sensors create corrupted sensor data. At the start of the simulation, FSW does
not know about the spacecraft states and runs like this for several seconds until the GS user sends,
through the GUI of the virtual GS, the command to start monitoring the spacecraft (“monitoring
only” command). This command comes across as a CCSDS packet that FSW parses. Once the
command is parsed, FSW starts ingesting star tracker data produced by the BSK simulation: fused
attitude measurements and rate measurements from the Magnetohydrodynamic Inertial Reference
Unit (MIRU). The GS user is able to monitor through the GUI the telemetry reported by FSW, which
is in turn filtering the sensor data in order to acquire locked attitude knowledge. Once attitude lock
is achieved, the GS user sends a new command to the spacecraft to maneuver to sun pointing (“sun

15

BL Messages Registers

GS Emulator

IOB 1
"rw1_torque_command"

"rw3_torque_command"

IOB 2
"rw2_torque_command"

"rw4_torque_command"

IOB 3
"head1_miru_packet"
"head2_miru_packet"

SBC
"command_packet"

"telemetry_packet"

"head1_fused_attitude_packet"
"head2_fused_attitude_packet"

BSK SC Models

Reaction Wheels
(Pyramid of 4)

Star Tracker
(Dual Headed)

Commands Database

Telemetry Database

Figure 13. Messages Shipped through the Black Lion Central Controller.

pointing maneuver” command). Once FSW receives the command, the GN&C algorithm tasks start
computing the control torque required to drive the spacecraft from its current estimated state to
the desired one. These torques come across the BL system as voltage commands for each of the
spacecraft’s wheels that the BSK simulation ingests and integrates in its dynamics simulation. The
GS user does not send any other command, and FSW keeps closing the loop with the spacecraft’s
dynamic simulation as well as reporting back telemetry to the GS. Figure 13 illustrates the start-
point, end-point and direction of all the message connections that happen in the described closed-
loop scenario.

Simulation Results

The plots in Fig. 14 show the true MRP set and angular rates as logged from the Basilisk numer-
ical simulation. On the bottom of the plot, the GS commands are marked in green boxes at the time
they are sent by the GS user. The first GS command (“monitoring only”) is sent after the BL simu-
lation has run for approximately 20 virtual seconds. During the time elapsed between the first and
second GS commands, FSW starts filtering the sensor data until convergence. This FSW monitoring
period is marked at the top of the plot within a pink box. During the monitoring period, the GS user
can observe the attitude locking process (convergence) through the reported telemetry. Of course,
the FSW filtering process is not reflected in the MRP and rates evolution of Fig. 14, which only
reflect the true simulation data. The second GS command is sent when about 1.5 virtual minutes
have elapsed since the beginning of the simulation. It is observed in the plots that the reaction wheel
torques commanded by FSW cause the spacecraft dynamics to evolve: through a steering control
law, the spacecraft is driven into the new attitude state of sun pointing.

FUTURE WORK AND DEVELOPMENTS

Black Lion is currently operational and functional for SW-sim testing. Features and functionality
are continuously being enhanced, with on-going efforts including:

16

attitude
acquisition

G
S

us
er

 c
m

d:
 "

m
on

ito
rin

g
on

ly
"

G
S

us
er

 c
m

d:
 "

su
n

po
in

t m
an

eu
ve

r"

sun pointing mode

�
B

/N
<latexit sha1_base64="FXaduQ6nY5xYLmOVXN7BAM41unE=">AAACp3ichVHLahsxFL2etHm4Tewky2xETSFZxJkJhmTppJuu2pTWD7CNuSNrbGE9BkkTMGYg/5Ft+lH9m2jG2UwS6AXB4Zwj6dx741Rw68LwXy3Y+vBxe2d3r/7p8/5Bo3l41Lc6M5T1qBbaDGO0THDFeo47wYapYShjwQbx8luhD+6ZsVyrP26VsonEueIJp+g8NW02xrEcWz6XOF3fXvzIp81W2A7LIm9B9AJa3SaUdTc9rD2MZ5pmkilHBVo7isLUTdZoHKeC5fVxZlmKdIlzti7z5uSrp2Yk0cYf5UjJVnworV3J2DsluoV9rRXku1osc1IhFuk51VJqVeVHmUuuJ2uu0swxRTeJkkwQp0kxJTLjhlEnVh4gNdy3QugCDVLnZ1n5oQjhr2lh/StlTzFz3kUKoeK86f/+n6UgjE1sdWpoDK6qlOKUJT5OXq8T4ncWvd7QW9C/bEdhO/rVaXU7m+XBLpzAFziFCK6gC9/hDnpAIYNHeIK/wVnwM+gHw401qL3cOYZKBfgMaxrSPw==</latexit><latexit sha1_base64="FXaduQ6nY5xYLmOVXN7BAM41unE=">AAACp3ichVHLahsxFL2etHm4Tewky2xETSFZxJkJhmTppJuu2pTWD7CNuSNrbGE9BkkTMGYg/5Ft+lH9m2jG2UwS6AXB4Zwj6dx741Rw68LwXy3Y+vBxe2d3r/7p8/5Bo3l41Lc6M5T1qBbaDGO0THDFeo47wYapYShjwQbx8luhD+6ZsVyrP26VsonEueIJp+g8NW02xrEcWz6XOF3fXvzIp81W2A7LIm9B9AJa3SaUdTc9rD2MZ5pmkilHBVo7isLUTdZoHKeC5fVxZlmKdIlzti7z5uSrp2Yk0cYf5UjJVnworV3J2DsluoV9rRXku1osc1IhFuk51VJqVeVHmUuuJ2uu0swxRTeJkkwQp0kxJTLjhlEnVh4gNdy3QugCDVLnZ1n5oQjhr2lh/StlTzFz3kUKoeK86f/+n6UgjE1sdWpoDK6qlOKUJT5OXq8T4ncWvd7QW9C/bEdhO/rVaXU7m+XBLpzAFziFCK6gC9/hDnpAIYNHeIK/wVnwM+gHw401qL3cOYZKBfgMaxrSPw==</latexit><latexit sha1_base64="FXaduQ6nY5xYLmOVXN7BAM41unE=">AAACp3ichVHLahsxFL2etHm4Tewky2xETSFZxJkJhmTppJuu2pTWD7CNuSNrbGE9BkkTMGYg/5Ft+lH9m2jG2UwS6AXB4Zwj6dx741Rw68LwXy3Y+vBxe2d3r/7p8/5Bo3l41Lc6M5T1qBbaDGO0THDFeo47wYapYShjwQbx8luhD+6ZsVyrP26VsonEueIJp+g8NW02xrEcWz6XOF3fXvzIp81W2A7LIm9B9AJa3SaUdTc9rD2MZ5pmkilHBVo7isLUTdZoHKeC5fVxZlmKdIlzti7z5uSrp2Yk0cYf5UjJVnworV3J2DsluoV9rRXku1osc1IhFuk51VJqVeVHmUuuJ2uu0swxRTeJkkwQp0kxJTLjhlEnVh4gNdy3QugCDVLnZ1n5oQjhr2lh/StlTzFz3kUKoeK86f/+n6UgjE1sdWpoDK6qlOKUJT5OXq8T4ncWvd7QW9C/bEdhO/rVaXU7m+XBLpzAFziFCK6gC9/hDnpAIYNHeIK/wVnwM+gHw401qL3cOYZKBfgMaxrSPw==</latexit><latexit sha1_base64="XkiPPNZJxXoRnAtmz6M3yQ8gE1E=">AAACp3ichVHLSgMxFE3HV62vVpdugkXQhXVGCrqsunHlA+1YsKXcSTNtMI8hyQilDPgfbvWj/BszYzejghcCh3NOknPvjRLOjPX9z4q3sLi0vFJdra2tb2xu1RvboVGpJrRLFFe6F4GhnEnatcxy2ks0BRFx+hg9X+b64wvVhin5YKcJHQgYSxYzAtZRw/pWPxJ9w8YChrOL4+tsWG/6Lb8o/BsEc9BE87odNiqv/ZEiqaDSEg7GPAV+Ygcz0JYRTrNaPzU0AfIMYzor8mZ431EjHCvtjrS4YEs+EMZMReScAuzE/NRy8k8tEhkuEZPkiCghlCzzT6mNzwYzJpPUUkm+E8Upx1bhfEp4xDQllk8dAKKZawWTCWgg1s2y9EMewl1T3LhXip4iap0L50LJeR7e/2fJCW1iU54aaA3TMiUZobGLk9VqGLudBT839BuEJ63AbwV37WanPd9eFe2iPXSAAnSKOugK3aIuIihFb+gdfXiH3o0Xer1vq1eZ39lBpfLgC8er0e8=</latexit>

Figure 14. True Data Plots from the Basilisk Spacecraft Simulation.

Dynamic discovery of nodes: This implies 1) Configuring nodes automatically to enter into a par-
ticular mode or scenario and 2) Launch/start-up nodes remotely from a single common call
within the Black Lion central controller.

Graceful handling of node failure: If one node fails, the user can decide whether to continue
running the SW-sim test with the remaining nodes or to restart the simulation run. Further,
description of failure modes and recovery logs are de facto.

Direct pipe for fault injection: Corruption of spacecraft models (sensors and actuators) and cor-
ruption of CCSDS packets can be triggered dynamically from the central controller.

Command and telemetry checking routines: This implies 1) Integration of telemetry post-processing
to view flow of commands and telemetry during run time and 2) Addition of simple callbacks
to provide telemetry checks (reporting passed/failed states) for runs in which post-processing
of telemetry is not desired.

Single-step execution and halt command: The user can place halt commands within the central
configuration script in order to run the SW-sim to a specific point and then perform peek
and poke, for example: reading out memory locations, inserting new values into memory
locations, examining stacks, attaching debuggers to various processes, and so on.

Unification/definition of data interfaces between applications: Electronic Datasheets (EDS). The
use of protobuffers enables backwards compatibility regarding changes on the overlay data
definition. Without backwards compatibility, changes on data structures (i.e. change of ver-
sions) may result in insidious errors, because the most efficient way to pass data is binary
format and mismatches in format/versions can go undetected until much later and so can be
extremely hard to find.

Handling different SW-sim build configurations: This implies handling of 1) Nodes built in 32
bits and others in 64 bits. Note that some data sizes change when these different options are
used, which can disrupt the access of the defined data structures), 2) Teams using different

17

compilers (there can be very subtle differences in data representations) and 3) Nodes with
different endianness.

CONCLUSIONS AND FUTURE WORK

The present work has covered the basic aspects of Black Lion, a communication architecture that
can be configured to provide an integral SW-sim functionality. Black Lion is currently supporting
validation and verification activities for an ongoing interplanetary mission. Yet, what makes the
architecture interesting is its flexibility and its scalability. These features are in turn granted by
the adoption of modern software tools and techniques. An abstracted communication layer across a
diversity of nodes is achieved by means of a unique central controller and two generic APIs attached
to each of the nodes. Currently, these APIs have been implemented for nodes whose heterogeneity
spans from: multithreaded vs. single-threaded nodes, asynchronous vs. synchronous nodes, little-
endian vs. big endian nodes, as well as a variety of programming languages: Python, C and C++.
The C# counterpart of the APIs is currently under development.

REFERENCES
[1] J. Cuseo, “STK/SOLIS and STK/ODySSy Flight Software: Supporting the Entire Spacecraft Lifecycle,”

2011 Workshops on Spacecraft Flight Software, Johns Hopkins University Applied Physics Laboratory,
Laurel, MD, October 19-21 2011.

[2] J. J. Biesiadecki, D. A. Henriques, and A. Jain, “A reusable, real-time spacecraft dynamics simulator,”
Digital Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE, Vol. 2, 1997, pp. 8.2–8–8.2–14
vol.2, 10.1109/DASC.1997.637259.

[3] C. S. Lim and A. Jain, “Dshell++: A component based, reusable space system simulation framework,”
Proceedings - 2009 3rd IEEE International Conference on Space Mission Challenges for Information
Technology, SMC-IT 2009, 2009, pp. 229–236, 10.1109/SMC-IT.2009.35.

[4] J. Cameron, A. Jain, B. Dan, E. Bailey, J. Balaram, E. Bonfiglio, H. Grip, M. Ivanov, and E. Sklyan-
skiy, “DSENDS: Multi-mission Flight Dynamics Simulator for NASA Missions,” Aiaa Space 2016,
No. September, 2016, pp. 1–18, 10.2514/6.2016-5421.

[5] S. A. Zemerick, J. R. Morris, and B. T. Bailey, “NASA Operational Simulator (NOS) for V and V of
complex systems,” Vol. 875205, No. May 2013, 2013, p. 875205, 10.1117/12.2015246.

[6] M. Grubb, J. Morris, S. Zemerick, and J. Lucas, “NASA Operational Simulator for Small Satellites
(NOS3): Tools for Software-based Validation and Verification of Small Satellites,” Proceedings of the
AIAA/USU Conference on Small Satellites, Logan, Utah, August 2016.

[7] J. Alcorn, H. Schaub, S. Piggott, and D. Kubitschek, “Simulating Attitude Actuation Options Using the
Basilisk Astrodynamics Software Architecture,” 67th International Astronautical Congress, Guadala-
jara, Mexico, Sept. 26–30 2016.

[8] S. Piggott, J. Alcorn, M. C. Margenet, P. W. Kenneally, and H. Schaub, “Flight Software Development
Through Python,” 2016 Workshop on Spacecraft Flight Software, JPL, California, Dec. 13–15 2016.

[9] M. Cols Margenet, H. Schaub, and S. Piggott, “Modular Platform for Hardware-in-the-Loop Testing
of Autonomous Flight Algorithms,” International Symposium on Space Flight Dynamics, Matsuyama-
Ehime, Japan, June 3–9 2017.

[10] J. Wood, M. Cols-Margenet, P. Kenneally, H. Schaub, and S. Piggott, “Flexible Basilisk Astrodynamics
Visualization Software Using the Unity Rendering Engine,” AAS Guidance and Control Conference,
Breckenridge, CO, February 2–7 2018.

[11] H. Schaub and J. L. Junkins, “Stereographic Orientation Parameters for Attitude Dynamics: A Gen-
eralization of the Rodrigues Parameters,” Journal of the Astronautical Sciences, Vol. 44, No. 1, 1996,
pp. 1–19.

[12] S. R. Marandi and V. J. Modi, “A Preferred Coordinate System and the Associated Orientation Repre-
sentation in Attitude Dynamics,” Acta Astronautica, Vol. 15, No. 11, 1987, pp. 833–843.

[13] T. F. Wiener, Theoretical Analysis of Gimballess Inertial Reference Equipment Using Delta-Modulated
Instruments. Ph.D. dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute
of Technology, Cambridge, MA, March 1962.

18

	Introduction
	Preamble: the FSW Algorithms and Application Development
	Expansion of Simulation Modules to Multiple Computer Nodes
	Communication between the Components
	Adoption of Modern Software Technology and Techniques
	Data Transfer and Synchronization
	Socket and Connection Definitions
	Request-Reply Communication between the Controller and the Nodes' Delegate
	Tick-Tock Synchronization

	Multi-Machine Functionality
	Numerical Simulation
	System Initialization
	Node Configurations
	Basilisk Node Configuration.
	Ground System Configuration.
	FSW Configuration.

	Simulation Run
	Simulation Results

	Future Work and Developments
	Conclusions and Future Work

