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Abstract

Autonomous navigation is essential for next generation missions in deep space where ground interaction is in-
feasible. Missions involving small-body flybys, target tracking and surface feature detection, autonomous landing,
or touch-and-go maneuvers provide examples of applications that demand autonomous navigation. Additional in-
terest has arisen in performing these missions with low- cost spacecraft in CubeSat or small satellite form-factors,
which present additional constraints on the navigation problem. Intrinsic limitations of CubeSats involving onboard
instrumentation, power and computational capabilities demand creative solutions to solve effectively the problem of
estimating the spacecraft’s rotational and translational states. In this context, implementing analysis tools that rapidly
assess the performance of given navigation hardware and software combinations, and iterate upon them, is critical
for reducing mission design time and cost. The focus of the present work is to explore the design and trade space
for specific software implementations of navigation filter architectures, their respective strengths and weaknesses, and
future paths forward for the field. Strong arguments are made in favour of using a modular navigation scheme in order
to decompose the complex process of state estimation into a series of simpler steps and exchangeable components.
In these lines, the Basilisk astrodynamics framework appears as a very attractive platform for the design of flexible
navigation algorithms and its migration to actual flight software.

1. Introduction

The successful performance of autonomous navigation
without ground in the loop requires sophisticated estima-
tion capabilities. Estimation of complex, fully coupled
states poses, in turn, new challenges on the implementa-
tion of navigation algorithms that are flexible and reusable
across multiple mission profiles.

Determining a spacecraft’s position and attitude remain
core requirements for space mission software packages.
From a theoretical perspective, the navigation problem
has received extensive treatment from a theoretical per-
spective over the last five decades [1, 2, 3, 4, 5]; how-
ever, the manner in which these theoretical advances have
been implemented remains strikingly similar to the tech-
niques used since the early model-driven software designs
of the 1960s and 70s. As mission planners increasingly
seek cheaper, faster, and smaller platforms to accomplish
“more with less,” the techniques and tools used to im-
plement algorithms to conduct filtering for deep-space
navigation have remained stagnant. This work aims to
identify the new challenges arising from small satellite

platforms in the autonomous deep-space navigation de-
sign environment, shortcomings in existing software im-
plementation methodologies, and potential new solutions
leveraging modular programming environments, in partic-
ular the Basilisk astrodynamics software framework.

High launch costs, spare lift capacity, and improving
miniaturization have increasingly pushed spacecraft de-
signers towards the use of small satellites (1-100 kg) in
place of more traditional designs. Typical small satellites
are tightly scoped around one or two science objectives
and instruments and around the natural size, weight, vol-
ume, and power constraints of small satellite platforms.
These constraints limit the possible scope of a given small
satellite mission. While this carries obvious disadvan-
tages, the hard limits on small satellite mission scope also
serve to reduce mission complexity, with knock-on ben-
efits for mission costs and schedules, while enabling de-
signers to tailor missions around specific instrument re-
quirements. In this sense, “small” can be considered a
fourth and necessary member of the phrase “faster, bet-
ter, cheaper.” The aforementioned benefits and drivers
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have led to a dramatic rise in the number of small satellite
launches over the last two decades.

Increasing interest in small satellites has also driven
the examination of small satellites for deep-space mis-
sions. JPL’s MARCO, which will fly to Mars as a sec-
ondary payload on the Mars 2020 mission as a technology
pathfinder, University of Colorado Boulder (CU)’s CU-
E3, which will fly on the first SLS flight in 2019, represent
two in-development examples; many more have been ei-
ther proposed or remain in the concept design phase. The
low costs of small satellites make them natural choices for
high-risk technology development missions; several com-
mercial companies, including Planetary Resources and
Deep Space Industries, have proposed the use of small
satellites for asteroid exploration and mining.

This push for reduced-cost deep space exploration is
additionally tied to improvements in space vehicle auton-
omy. At present, few deep space missions have made use
of on-board autonomy due to its perceived lack of robust-
ness, leading to high operational costs and large staffing
needs. Reducing the dependency of space missions on
contact with Earth will reduce mission cost and has been
cited as a major technology development goal by various
space agencies. However, software for autonomous sys-
tems is substantially more complex and therefore expen-
sive to develop than for non-autonomous systems, com-
pounding the cost and difficulty of development and test-
ing cycles.

While historically aerospace software has been devel-
oped to be mission-specific, modular designs and shared
standards adopted in the recent decades have shown to
improve efficiency [6]. The development of inflexible,
mission-specific flight algorithms is a recurrent and prob-
lematic pattern in the aerospace industry that needs to
be addressed [7]. Reference [8] remarks that, although
aerospace software is intended to support the rest of the
system for which it was designed, it often disrupts sys-
tem schedules and budgets due to lack of architecture and
improper implementation.

One solution to manage the development of such
software suites effectively is through incremental de-
velopment, a technique enabled by modular software
frameworks. To this end, a novel platform for agile
flight software (FSW) development called Basilisk is un-
der development at CU’s Autonomous Vehicle Systems
(AVS) Laboratory and the Laboratory for Atmospheric
and Space Physics (LASP) to support agile, modular
aerospace software development. The present work aims
to identify specific challenges of autonomous small satel-
lite deep space navigation, issues in existing approaches,
and methods of modular software development featuring
the Basilisk astrodynamics framework.

2. Deep Space Cubesat Navigation System Overview

Cubesats are a specific and recurring area of interest for
deep-space exploration due to their low cost, somewhat
standardized components, and ease of integration along-
side larger primary payloads. As such, we develop our ap-
proach to navigation in the specific context of deep-space
interplanetary navigation within a cubesat platform. Ad-
ditionally, we aim to incorporate as much autonomy into
the navigation suite as possible to support missions for
which non-autonomous solutions are either technically or
monetarily infeasible.

In doing so, we take the capabilities of other space nav-
igation suites–such as JPL’s AutoNav–as guidelines. The
onboard navigation system is aimed to detect and isolate
known celestial bodies (e.g. planets, moons, asteroids,
etc.) in images obtained from its optical sensors, derive
the associated navigation measurements and process those
measurements to estimate the CubeSat’s position, veloc-
ity and dynamical model parameters. The final product is
required to be a tool that allows the user to simulate the
navigation system and assess the performance for these
types of missions, while having the freedom to explore
the mission design trade space (e.g. orbit type, satellite
model, optical sensor properties, star tracker properties,
onboard clock stability, etc). Such a flight software sys-
tem is broken down into the following components:

Navigation Flight Algorithms: involve estimation of
translational states (position and velocity), attitude
estimation (orientation and angular rate), onboard
clock drift estimation (to be corrected with peri-
odic ground updates) as well as anomaly detection to
monitor system performance and take action to avoid
estimate divergence (e.g. detected maneuvers, mea-
surement outliers, etc).

Measurement Processing Flight Algorithms: celestial
body beacons captured in an image are used to
determine the spacecraft’s translational states. If
the lighting conditions and exposure times are
appropriate, background stars contained in the same
images can be simultaneously utilized in the attitude
estimation algorithm. A different approach is to
take background star observations at a different
scheduled rate than beacons (i.e. single optical
camera operating in separate star tracker and beacon
sensor modes). This later solution may be the only
option in proximity operations where illumination
and time exposure for large bodies conflicts with
stars (light point source) observation.

Onboard Dynamics Model and Simplified Propagator:
Propagates all the spacecraft dynamic states relevant
to the navigation problem. It is critical to understand
that this is the dynamic model considered in flight
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software and the integration scheme that the onboard
computer will be using. There is a clear distinction
between the flight software models that are to be
embedded into the flight computer, and the simula-
tion DKE (Dynamics,Kinematic and Environment)
software models that are used to simulate the phys-
ical spacecraft behavior in replace to real hardware
and real space environment conditions. Whereas it
is desired to have simple onboard dynamics models
and to use low-order integration schemes within
FSW in order to reduce computational expenses,
the DKE simulation models must be as accurate
as possible in order to replicate the real physics
reliably. Further insight in the distinction between
FSW and DKE simulation is provided in the section
that overviews the Basilisk Software Framework.

Onboard Ephemeris Storage: Contains ephemeris in-
formation of the various celestial bodies that are
relevant to the navigation problem during the mis-
sion time-span. Once more, this corresponds to the
ephemeris stored on the onboard computer. There-
fore, standard ground ephemeris files, like JPL’s
SPICE kernels, are not suitable to be loaded and
queried onboard. SPICE, in particular, is a very
heavy package that would significantly impact exe-
cution times of FSW tasks.

These myriad software components are delineated to
demonstrate the variety of differing software components
that must be developed for deep space navigation missions
to function.

3. FSW Development Strategies

3.1 COTS Software Model-Based Development

The complete engineering process to develop an
aerospace FSW suite and test it on the flight processor
is typically achieved by taking the following 3 steps:

1. Develop and test flight algorithms in the desk-
top environtment: The first step consists of de-
veloping a set of flight software algorithms suitable
for the mission being considered. Dynamics, Kine-
matic and Environment (DKE) models are also built
with the purpose of testing the FSW algorithm set
in a simulated closed-loop until the desired capa-
bility is achieved and mission-specific requirements
are met. Architecture design and modeling of both
software functions and hardware subsystems is often
performed using block-diagram programming soft-
ware tools. Platforms commonly used for building
quick models of control systems are Mathworks’s
Simulink and National Instruments LabVIEW. Ref-
erence [9] provides a comprehensive review of the
strengths and weaknesses of aerospace COTS soft-
ware packages that are currently available.

2. Auto-generate code in the required programming
language: The next step is typically to select an
automated source-code generation software tool that
is compatible with the block-diagram modeling tools
selected above and that auto-generates source code
in the required programming language (aka auto-
coding). Both Simulink and LabVIEW software can
produce C code directly from their drag and drop en-
vironment with the use of add-on packages.

3. Define the flight target: Finally, the flight target
needs to be defined: autogenerated code can be tar-
geted to a specific processor, Real Time Operating
System (RTOS), or a publish/subscribe middleware
layer.

Along the path that has just been presented, there are sev-
eral concerning points that deserve a closer look:

• DKE modelling: State-of-the-art COTS softwares
each have unique strengths, but provide limited capa-
bility to provide a complete physically realistic dy-
namical representation of a spacecraft for the pur-
pose of ADCS design analysis, while allowing user-
friendly, platform independent interaction. Addi-
tionally, many of these software solutions are pro-
hibitively expensive for low-budget missions or stu-
dent development. Open-source softwares/freeware
may be poorly maintained and/or not user friendly,
requiring more time to setup and learn than it is avail-
able for a particular mission.

• Auto-coding: Automatically generated code is usu-
ally less efficient, in either size or execution, than
optimized hand-written code, and proves to be very
challenging to reverify and debug due to the lack of
readability. Although some code generators incorpo-
rate their own optimization features, the challenges
remain.

These challenges have motivated a search for alterna-
tive design methodologies based on more contemporary
software development strategies.

3.2 The Basilisk Software Framework

The AVS Laboratory and LASP are collaborating on a
software development testbed named Basilisk. Basilisk
seeks to capitalize on the potential of using Python as a
testbed for FSW development provided that the simula-
tion and flight algorithm code are written exclusively in
C/C++, and then automatically wrapped into Python for
simulation setup, analysis, and testing.

The architecture of the Basilisk software framework, as
depicted in Fig. 1, is decomposed into two main blocks: a
high-fidelity simulation of the physical spacecraft (DKE
models) and a flight software set (on-board GN&C al-
gorithms suite). Both the simulation and flight software
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Fig. 1: Architecture of the Basilisk astrodynamics platform.

processes are developed in a modular architecture us-
ing C/C++ modules that communicate with each other
through a Message Passing Interface. The modularity of
the system implies that each process is decomposed into
a series of simpler steps and exchangeable components,
and the cascading of modules is set at the Python level,
allowing different levels of simulation fidelity and flight
software sophistication. The proposed modular scheme
is a convenient strategy for missions with changing and
evolving requirements and provides a systematic frame-
work to scale mission complexity in a controlled manner
that developers can manage.

In summary, the Basilisk platform is an excellent op-
tion for flight software prototyping and development that
is specially suitable for, although not restricted to, low-
cost missions for several reasons:

• A generic set of FSW algorithms is already avail-
able: The mix-and-match strategy of the Basilisk
FSW architecture allows to suit a wide range of mis-
sion profiles with the already existing modules. Fur-
thermore, the flight software set is easily scalable and
dovetails very well with the creation of mission spe-
cific modules to satisfy particular requirements.

• Reconfigurability and user-friendly analysis envi-
ronment: The construction and testing of the sev-
eral FSW rate groups and of different modes of the
flight application is handled through the high-level
Python language, which is recognized as an excel-
lent scripting environment and development testbed.
Furthermore, Python-standard analysis products like
numpy and matplotlib are readily available to facili-
tate rapid and complex analysis of data obtained in a
simulation run without having to stop and export to
an external tool.

• High-fidelity DKE models are available: The
Basilisk simulation engine provides a complete,
physically realistic dynamic representation of the
spacecraft. Just to provide a few examples, it is
possible to run simulations that include higher order
gravitational effects, flexing dynamics[10] or solar
radiation pressure effects[11].

• Speed: The fact that the underlying simulation ex-
ecutes entirely in C/C++ allows for faster than real-
time simulation with built-in repeatable Monte Carlo
capability.

• Ease of transition from desktop testbed environ-
ment to the flight target:
Being open-source and cross-platform in nature (cur-
rently supported in macOS, Linux and Windows),
the Basilisk package can be easily deployed and built
in a desktop environment. With the generic FSW
and DKE algorithms suite provided out-of-the-box,
the user can readily run closed-loop dynamics nu-
merical simulations. Furthermore, it is also possi-
ble to use Basilisk for hardware-in-the-loop (HWIL)
testing, running the Basilisk flight algorithms on a
flight processor and the DKE suite on separate hard-
ware. Reference [12] shows a HWIL setup using the
ARM processor of a Raspberry Pi, where Basilisk
flight algorithms are readily compiled and deployed
with no modifications. Reference [13] demonstrates
how Basilisk-developed algorithms are integrated to
NASA’s middleware, the Core Flight System (CFS),
and embedded onto a flight target running a standard
RTOS. Transitioning from the Basilisk environment
to the CFS is the strategy currently being targeted by
LASP for a subsystem of a mission in development.

4. Space Zoo: Basilisk and DINO C-REx

Due to the pre-existing strengths afforded by Basilisk, it
was selected to form the backbone of the Deep-space In-
terplanetary Navigation Optical Colorado Research Ex-
plorer (DINO C-REx) project, which aims to provide a
complete set of tools for designing future deep-space nav-
igation suites for small satellites using optical sensors. It
provides a case study to describe the implementation of
various components of the CubeSat problem. Figure 2
shows how DINO C-REx requirements fit into the the
Basilisk framework:

DKE ModulesFSW Modules
Lighting 

Simulation
Image 

Processing

Navigation 
Algorithms

True Ephemeris 
Evaluator

True Satellite 
Propagator

Image 
Generation

Messaging 
Bus

Onboard 
Propagator

Onboard 
Ephemeris

Fig. 2: The DINO project requirements framed in the Basilisk
simulation architecture.

Having identified the requirements, the Basilisk frame-
work can be even further exploited to yield a more com-
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prehensive simulation context that allows the design and
implementation of a realistic FSW executive system. A
complete scheme of the envisioned FSW system function-
ality is provided in Fig. 3. The different parts of the exec-
utive are described next:

FSW Application: Main GN&C system. Includes im-
age processing, filtering (rotational and translational
state estimation) and onboard filter calibration for
state-reduction.

FDIR: Global fault detection system.

Sequencing subsystem: Responsible for the command-
ing of the Imaging, ADC and Propulsion subsystems.

FSW Real Time: Time management system. Includes
onboard ephemeris maintenance and clock drift com-
pensation.

With the presented big picture in mind, the rest of the pa-
per will discuss the challenges of the filtering navigation
scheme that is to be implemented within Basilisk over the
upcoming months. As highlighted in Fig. 3, the naviga-
tion algorithms are part of the FSW mission-specific ap-
plication.

5. Modular Fractionation and its Application to the
Navigation Problem

Recall that in the Basilisk framework flight algorithms are
built through layers of modules with atomic functional-
ity where each individual module can be added, replaced
or swapped in a lego-like fashion. A key benefit is that
the software is built through frequent increments rather
than in a singular large effort. Every increment fulfills a
well-defined functionality that contributes to the overall
requirements. Encapsulating the GN&C functionalities in
completely independent modules instead of monolithic al-
gorithms is a key aspect in terms of software safety. There
have been several instances of critical anomalies arising in
complex software due to unexpected behavior of commer-
cial off-the-shelf software[14]. With the aim of bringing
down mission risks, the suggested staging of independent
guidance modules allows scaling up the functionality in a
safe and systematic manner. Further, modular designs al-
low direct reuse of functional algorithm code while avoid-
ing duplication. Because the same module can potentially
be used in very different mission-scenario contexts, there
is an overall reduction of lines of code to maintain and to
validate, which in turn translates into reduced V&V costs.

Reference [15] presents a modular scheme for the gen-
eration of attitude guidance algorithms that is flexible
and numerical simulations in the form of integrated tests
proved the validity of the architecture for the guidance
case. Now, a similar modular technique is being devel-
oped to solve the computationally expensive problem of

OD and attitude estimation (i.e. translational and rota-
tional navigation). Some considerations to beware of in
the new context of estimation are the challenges of a frac-
tionated approach and the trade-off between a flexible
analysis tool and ease of transition to actual flight soft-
ware.

Next, three different approaches for solving the nav-
igation/estimation problem are discussed: a monolithic
approach, a modular “fractionated” approach and the so-
called “state-manager” approach. The monolithic tech-
nique refers to the conventional way of performing orbit
determination with a dedicated, stand-alone, OD-tool. It
is discussed only for putting the reader into context.

5.1 Monolithic Approach

In principle, monolithic OD tools could be used jointly
with the Basilisk framework. The strategy in this case
would be to generate true orbit and dynamic data, and cor-
rupt it if necessary, within the Basilisk engine. These data
can then be pulled out of the Basilisk messaging system
and used a posteriori to obtain estimation solutions with
the user-custom OD tool. While this approach works for
the purpose of developing and testing monolithic OD es-
timation algorithms, it is limited by the lack of ability to
feed these OD outputs back to the Basilisk simulation dy-
namically in order to test other intrinsic components of
FSW, like controls, in closed loop.

Indeed, the use of monolithic OD tools where state de-
termination is the focus of the product, and other space-
craft events and FSW functionality are build as attrezzo
around it, can complicate the development of an integral
flight software system beyond navigation. The DINO-
Basilisk toolset aims to build the flight algorithms for es-
timation and navigation as a single piece that fits into a
bigger puzzle, in accordance to the concept illustrated in
Fig. 3 .

A critical difference between Basilisk and most OD-
focused tools is that within Basilisk there is a clear de-
lineation between flight software and dynamics simula-
tion. In conventional estimation terms, the dynamics
simulation of Basilisk stands for the ”true” model while
the Basilisk flight algorithms are the simplified dynam-
ics counterpart. Because the concept of ”state to be esti-
mated” belongs exclusively to flight software, it is not em-
bedded into the true dynamics to keep track of the deriva-
tives of the state that FSW cares about. Instead, flight
software must have its own dynamic model, and operate
upon that for state estimation.

5.2 Fractionated Approach

Splitting the development of GN&C algorithms into
smaller, tightly-scoped submodules–a “fractionated” ap-
proach to software development– can simplify implemen-
tation and testing. However, it could be argued that mono-
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Fig. 3: Illustration of the overall FSW executive system highlighting the navigation algorithms, focus of this work.

lithic custom algorithms can reduce computational cost
due to communication overhead. In the context of low
power missions, like those involving cubesats or small-
sat form factors, the computational load of a fractionated
implementation must be considered for flight implemen-
tation.

While in Ref. [15] it is determined that, as far as the
guidance is concerned, a large number of sub-components
would be necessary in order for the fractionated approach
to have a significant impact on speed, this statement can-
not be readily extrapolated to estimation. In state estima-
tion the cons of a fractionated technique could increase
and therefore must be analyzed thoroughly, since invert-
ing covariances and solving for states can be computation-
ally intensive already in a single, custom, optimized algo-
rithm. It is in the scope of the proposed work to compare
the power consumption and CPU usage of a fractionated
navigation algorithm over its monolithic counterpart.

5.3 State-Manager Approach

An alternative to the aforementioned architectures is an
scheme involving a dedicated “state-manager.” This is
currently the basis of the underlying Basilisk “truth dy-
namics” engine, which is described briefly here for refer-
ence to inform the analogous estimation architecture. It is
important to recall that this dynamics engine is separate
from any means of propagation used in “flight software”
tasks.

The Basilisk true dynamics architecture provides a flex-
ible, fast means of propagating the dynamics of a space-
craft. The objective of the Basilisk dynamics architec-
ture is to propagate the “core” states of a given spacecraft
(translational and rotational) and any additional states
necessary for other “dynamic” components (such as re-

action wheels). This is accomplished through a so-called
“state-manager” which tracks the system states necessary
for the dynamics propagation. By default, the instantia-
tion of a spacecraft within Basilisk creates a state manager
that tracks its translational and rotational states, providing
a core around which other states can be added. Physi-
cal forces that can affect these states are represented in
software as “effector” objects, which are typically used
to represent external forces and torques acting on a given
spacecraft. Additional states can be added through a spe-
cial class of effectors, which in turn extend the number
of states tracked by the state manager. This is used in
cases where additional dynamical states are required to
accurately represent the spacecraft’s motion, such as in
the presence of reaction wheels. These additional states
can have dependencies on other states through linkages
managed by the state manager, enabling the development
of extremely complex, coupled dynamics models through
very simple building blocks.

This design has both advantages and disadvantages
over the message-passing interface used by the fraction-
ated approach. Using a dedicated state manager and spec-
ifying specific interfaces for models of phenomena that
affect the spacecraft’s dynamics retains modularity while
simultaneously enabling the use of algorithm-speeding
techniques like back-substitution to reduce the computa-
tional impact of cross-coupling. Standard interfaces to the
dynamical equations of motion through the state manager
simplifies both the addition of new dynamical models and
the integration of those models.

While this architecture adds software complexity ver-
sus simple or hard-coded dynamic models, its flexibility
and modularity is clear and has proven itself valuable to
mission analysts. New models of dynamic phenomenon,

IAC-17,C1,IP,22,x38512 Page 6 of 12



68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by the International Astronautical Federation. All rights reserved.

such as atmospheric drag or fuel slosh, have been rapidly
developed and folded into Basilisk under this architecture.
It enables the combination of flexibility, computational ef-
ficiency, and high fidelity that the Basilisk team has aimed
for from the start.

The advantages of the “state-manager” approach for
flexibility and speed make it attractive for navigation tech-
niques, which require the use of myriad sensors and are
typically relatively computationally expensive. In this ar-
chitecture, sensors are represented as effectors with speci-
fied relationships between their readings and the states de-
sired to be estimated. Sensor parameters, such as bias and
drift, could be estimated alongside core spacecraft states
in a manner similar to that accomplished in the existing
state manager architecture.

A key difficulty in the extension of this architecture to
the coupled estimation problem is the tracking of state
variances and covariances. Because the states are dynami-
cally initialized, tracking the covariance matrix for the en-
tire system will be challenging. Further, because the idea
of the state manager exploits the advantages of object-
oriented programming or OOP (possible with languages
like C++ or Python), the concept is not easily portable to
embedded C flight software.

6. High-level Modular FSW Stack

To demonstrate the benefits of a fractionated approach, a
fractionated navigation system is presented here as a “rep-
resentative” suite for a small satellite using optical navi-
gation. Individual modules are tightly scoped by function,
and communicate with one another using a general mes-
sage passing interface.

The idea is to use optical measurements of nearby “bea-
con” celestial objects and background stars to solve the
coupled attitude-orbit determination problem. The sys-
tem’s capabilities include onboard ephemeris services,
onboard trajectory propagation as well as generation of
observables and partials. A key concept is that all these
functionalities are encapsulated in plug-and-play modules
that are completely independent of the filtering strategy
downstream: for the linearized case, either a batch or se-
quential filter could take advantage of the same outlined
modules. The case of higher order filters is simpler only in
the sense that partials are not even required, but is not the
focus of the present study because of their higher com-
putational requirements, likely to conflict with CubeSat
processor limitations.

6.1 Onboard Ephemeris Handling: Frames and Time

An important requirement of any estimation tool is to han-
dle nicely the switching between reference frames and to
keep track of the ephemeris time after compensating for
the onboard clock drift. A sample modular way of fulfill-
ing this requirement is depicted in Fig. 4. The modules

involved on ephemeris services are described next.

6.1.1 Clock Module

It reads the spacecraft time (second elapsed since system
boot) from the physical spacecraft clock and, if provided
with an estimate of the clock drift, it is able to infer a value
for the ephemeris time (i.e. Julian Date) to be considered
in flight. By breaking this into a separate module, devel-
opers can simulate system responses to clock inaccuracy
without using a physical hardware clock; at the same time,
by treating the clock input as an abstract input to the sys-
tem, the rest of the navigation system can be transitioned
to flight without much complexity.

6.1.2 Celestial Body Ephemeris Module

Each celestial body to be considered by FSW has an
individual instantiation of the same Ephemeris Module.
In essence, the Ephemeris Module is an storage buffer
for the position and velocity of a celestial body (plan-
ets, Sun or beacons) during the time arch of the mission.
Early in development, this module would likely use “full”
ephemeride solutions like SPICE for ease of use; how-
ever, the modular interface to the ephemeris output could
readily be replaced with a more flight-suitable ephemeris
solution (such as Chebyshev polynomials) when the rest
of the navigation system is transitioned into flight. Once
again, the application of tightly-scoped modules reduces
headaches down the development timeline.

6.1.3 Ephemeris Converter Module

Handles the change of base reference frame to be used
onboard, according to the requirements of each mission
phase. Inputs to the module are: set of ephemeris data
with respect to an initial base reference and the new
base reference desired. The module output is the set of
ephemeris data mapped to the new base reference (body
correlated ephemeris). Figure 4 shows that the initial base
reference is heliocentric (i.e. some Sun-centered frame).
If the new base reference corresponds, for instance, to an
Earth centered frame, FSW would now provide a pre-
Copernican view of the word. Breaking out this func-
tionality explicitly simplifies debugging during develop-
ment and testing after development is completed, as the
ephemeris conversion happens only in one specific com-
ponent of the software suite.

6.2 Dynamics and Measurement Models

The problem of coupled orbit determination and attitude
estimation can be considered either hard-coupled or soft-
coupled. Hard-coupling implies having a single state that
encompasses both translational and rotational variables
which are hence estimated within the same filter. Soft-
coupling allows two different states and filters for space-
craft’s attitude and OD running at different rates and feed-
ing each other.
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Fig. 4: Modular handling/switching of onboard reference frames, with initial ephemeris storage for Earth, Mars and the spacecraft’s
reference trajectory in an heliocentric frame.

Figure 5 shows a modular scheme of the orbit estima-
tion process using optical beacons. The mission phase
considered is an Earth-Mars interplanetary cruise, and a
suitable dynamics model is considered Because the orien-
tation of the on-board optical sensor depends on the space-
craft’s attitude, rotational and translational states become
coupled. In Fig. 5, the spacecraft attitude variable (“SC
ATTITUDE”) is highlighted in capital cyan letters to mark
its role within the navigation scheme. The high-level ar-
chitecture depicted in Fig. 5 leaves open the soft or hard
coupling character of the navigation solution. Upcoming
work will focus on detailing aspects of the filtering archi-
tecture to allow exploration of both coupling approaches
while maintaining the plug-and-play modularity. It is im-
portant to highlight that Fig. 5 is showing generic modules
configured for a specific mission phase that drives the se-
lection of the onboard dynamic and measurement models.
In this sense, “Mars-Earth Cruise Dynamics Module” cor-
responds to a specific instantiation of a generic Onboard
Dynamic Module, whereas “Pixel & Line Mapping Mod-
ule” corresponds to a specific instantiation of a generic

Measurement Module. The generic modules for onboard
dynamic and measurement modelling are described next.
Some of the mathematics related to the particular instan-
tiations showcased in Fig. 5 is also derived in order to put
the reader into more technical context.

6.2.1 Onboard Dynamics Module

Generic Functionality:
This module is aimed to define the dynamic forces f i to
be modeled on-board for state estimation purposes. If lin-
earization is to be applied in the filtering strategy down-
stream, the Jacobian of the state, defined asA “ Bf

BX will
be needed. Without loss in generality, Fig. 6 displays the
aforementioned functionality.

General forces f i to potentially be considered are fol-
lows:

f “ fm`f sh`f 3b`f rel`f d`f srp`f srp`f other (1)

where fm is the point mass acceleration of the orbited
planet, f sh is the acceleration due to spherical harmon-
ics, f 3b are third-body perturbations, f rel are relativistic
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Fig. 5: Sample fractionated architecture. Onboard Dynamics Module appears in the red box, being initialized for the particular
phase of Earth-Mars interplanetary cruise. Onboard Measurement
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A =
@f

@X

���
X⇤

X

Ẋ = f(X, t)
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Fig. 6: Generic Onboard Dynamics Module.

effects, f d is the atmospheric drag effect, f srp is solar
radiation pressure, f arp is albedo radiation pressure, and
f other correspond to unknown acceleration terms that can
be modelled for instance with polynomials.

The accuracy of the selected onboard dynamic model
depends on the requirements of the mission phase: it is
usual to neglect some dynamic effects for the sake of on-
board computational speed.

Particular Instantiation:
For instance, during an interplanetary cruise Earth-Mars,
the following reduced dynamic model would be a sensible
choice:

f “ fm ` f 3b ` f srp (2)

This is the example dynamic model selection of Fig. 5.
Developing the terms of Eq.(2) further and using a simple
cannonball model for f srp:

fm “ ´µN

rB{N

r3B{N
(3a)

f 3b “ ´

nb
ÿ

i“1,i‰N

µi

˜

rB{N ´ ri{N

|rB{N ´ ri{N |3
`
ri{N

r3i{N

¸

(3b)

f srp “ CRKsrp
rB{N ´ rSun{N

|rB{N ´ rSun{N |3
(3c)

where CR is the SRP coefficient, nb is the total number
of celestial bodies (nb “ 3 accounting for Earth, Marth,
Sun), and Ksrp is a constant scale factor defined as fol-
lows:

Ksrp “ `
Asc

msc
p149, 597, 870kmq2

ˆ

Psrp, AU
1km

1000m

˙

(4)
with ` being a factor that can be applied to represent the
fraction of Sun that is visible (currently always set to ` “
1) and with

Psrp, AU “
Φ

c
“

1358

299, 792, 458
« 4.53 ¨ 10´6Pa (5)

Such a module would then require, as an input,
ephemeris information data (output of the Ephemeris

IAC-17,C1,IP,22,x38512 Page 9 of 12



68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by the International Astronautical Federation. All rights reserved.

Converter Module) to evaluate fm and f 3b as well as ve-
hicle properties data to evaluate f srp. Note that, in Eq.(3),
the spacecraft position rB{N and the SRP coefficient CR

are typically variables to be estimated in the filter.
Once again, breaking out this specific filter feature - of

modelling dynamics onboard - as a separate module sim-
plifies development and testing. Developers can rapidly
determine how filter performance changes in response
to changing dynamic models without large system-level
overhauls by simply swapping out the underlying dy-
namic forces within the model. This also allows for trades
to be readily made between computational efficiency and
filter accuracy under different dynamic models. A spe-
cific example of this type of trade is the selection of an
integration technique for the dynamics; algorithm design-
ers could select between simple Euler schemes or more
complex RK methods.

6.2.2 Measurement Definition Module

Generic Functionality:
Every type of measurement processed by FSW, in order
to estimate the spacecraft’s translational and rotational
states, will own an individual instantiation of the same
module class. The covariance matrix R and, for a lin-
earized filter case, the Jacobian of the measurement H̃
and the measurement residual y are required by the filter
modules downstream. Without loss in generality, Fig. 7
displays the aforementioned functionality.

Measurement Module

State definition

Selected meas model        

Jacobian of the Measurement

Measurement Residual

H̃ =
@G

@X

���
X⇤

R = E[✏✏T ]

X

Y = G(X, t) + ✏

G, R

y = Ymeas � Y ⇤

Fig. 7: Generic Measurement Module.

Particular Instantiation:
In the optical image case for OD, the type of measurement
considered is the pixel and line position of imaged aster-
oid beacons. Therefore, a specific instantiation of such
a measurement model would be the so-called ”Pixel and
Line Mapping Module”. As mentioned, if linearization
is to be applied in the on-board filtering strategy, a resid-
ual vector between imaged and predicted coordinates is

required. In this context, it is desirable to generate the
residual vector by mapping the predicted location of bea-
cons (according to onboard ephemeris) into line-of-sight
information (azimuth-elevation or pixel-line) that can then
be compared to the imaged data, and not the other way
around. The rationale for this is that selected beacons
whom ephemeris is loaded onboard are limited In con-
trast, the number of candidate point sources in the image
can be larger due to the presence of outliers.

The process for mapping the predicted location of bea-
con asteroids (according to onboard ephemeris) into line-
of-sight information (pixel and line) is outlined following.

1. Retrieve inertial line-of-sight (LOS) vector of beacon
asteroid θN from the onboard ephemeris.

2. Compute Direction Cosine Matrix that maps from in-
ertial frame N to camera platform frame C.

rCN s “ rCBsrBN s

where rCBs is the constant attitude offset between
the camera platform and the spacecraft’s principal
body frame (assuming a rigid-body system), and
rBN s is the spacecraft’s instantaneous attitude as
provided by the Attitude Control Subsystem.

3. Map inertial predicted LOS vector θN into camera-
frame coordinates:

θC “

»

–

θx,c
θy,c
θz,c

fi

fl “ rCN sθN

4. Transform θC into 2D camera plane:
„

x
y



“
f

θz,c

„

θx,c
θy,c



where f is the camera focal length in mm, and px, yq
is the projection of the LOS vector into focal plane
coordinates.

5. Convert from rectangular coordinates px, yq to pixel
and line pp, lq:

„

p
l



“

„

kx kxy kxxy
kyx ky kyxy



»

–

x
y
xy

fi

fl`

„

p0
l0



where pp, lq is the center pixel and line of CCD,
and kij are camera parameters that are calibrated on
flight. Nominally, kx and ky are set to match f ands
the off-diagonal terms are set to zero.

Eventually, the computed pixel and line values of each
beacon are differenced with their respective observed val-
ues to get a residual matrix.
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6.3 Filtering

The illustration in Fig. 5 does not particularize on any
specific filter strategy (i.e. batch or sequential) beyond
linearization. Indeed, the overall idea of the navigation
architecture under construction is to provide the ability to
plug-and-play with different linear filters without affect-
ing the internals of the other navigation modules. Here,
the asynchronous nature of the messaging architecture is
useful. The update module could store sensor inputs over
many time instances (when operating in a batch mode),
or instead opt to process whatever measurements were
provided most recently (as in a sequential filter). The
rest of the system modules are not tightly coupled to the
implementation of this specific step; they can output at
whichever frequency they want by design. While this cre-
ates an impetus for system designers to carefully craft the
runtime of each module, it provides a clear framework in
which timing considerations can be considered and opti-
mized at the level of tightly-scoped modules instead of
monolithic software packages.

7. Conclusion and Future Work

Navigation filter development seems well-suited to modu-
lar software development frameworks. Fractionated MPI-
based techniques, which are currently supported by ex-
isting software frameworks and which have long histo-
ries of success in other mediums, could be used imme-
diately to bring the benefits of modularity to navigation
filter development and implementation. The detailed nav-
igation example provided demonstrates some of the qual-
itative benefits of such an architecture for both develop-
ment and testing processes. More complex state manage-
ment techniques may be less valuable for flight software,
but offers substantial benefits to early mission designers
whose hardware and requirement environments change
rapidly. Both classes of filtering architecture established
in this work are supported within the Basilisk astrodynam-
ics software framework.

Naturally, the efficacy of these architectures depends
heavily on their relative computational efficiency, ability
to deliver on promised modularity, and ease of transition
to flight software. In light of these necessary metrics, fu-
ture work for these efforts is centered around the imple-
mentation of these modular navigation filter architectures
for comparison with existing techniques.
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