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VOLUME MULTI-SPHERE METHOD

Philip Chow; Joseph Hughes] Trevor Bennett; and Hanspeter Schaub?®

The Volume Multi Sphere Method (VMSM) is a recent method for approximating
the electrostatic forces and torques acting on a spacecraft. VMSM reduces the con-
ducting spacecraft shape to a collection of equipotential spheres spread through-
out the spacecraft volume. The location and size of these spheres are dependent
on the spacecraft geometry being modeled. Prior work illustrates the existence
and prospect of this VMSM approach on a cylinder, but it took considerable hand
tuning to arrive at a suitable VMSM solution. This paper investigates the VMSM
setup process itself. In particular, a modified VMSM optimization approach is
presented which seeks to avoid any time-consuming hand tuning. The symmetric
cylinder problem is investigated with a range of VMSM spheres and a new capaci-
tance constraint that significantly reduces computational time with minimal effect
on accuracy.

INTRODUCTION

At Geosynchronous Earth Orbits (GEO), spacecraft can be charged to high voltages — in the
range of tens of kiloVolts — due to interactions with plasma in space."> Of importance is the
ability to predict how a charged spacecraft will interact with the Earth’s magnetic and electric fields
as well as other neighboring charged spacecraft. These interactions cause forces and torques to
act on the spacecraft, which in turn affect the attitude and orbital dynamics of the spacecraft. A
controlled spacecraft near an uncontrolled object can take advantage of these electrostatic forces
and torques to remotely influence the object’s attitude and orbit.>

One concept using electrostatic charging is the space tug called the Geosynchronous Large Debris
Reorbiter (GLiDeR), which alters the charge of an uncontrolled spacecraft within the plasma envi-
ronment at GEO as shown in Figure 1.* By altering the charge of the spacecraft, forces and torques
can be applied to the spacecraft remotely, allowing for actions such as the safe detumble,’ disposal
of debris at GEO,%7 and orbit corrections® to be quickly implemented. With electrostatic charging,
detumbling an object rotating at 2 degrees per second to near zero rates can be accomplished within
3-7 days depending on the tug size and voltages used,’ and increasing the perigee of an orbit by
300 kilometers can be done in less than three months.®> To touchlessly change the dynamics of an
uncontrolled object in this manner, it is necessary to be able to model and predict the dynamics of
the system faster than real-time.

*Graduate Research Assistant, Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA

fGraduate Research Assistant, Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA

tGraduate Research Assistant, Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA

§Alfred T. and Betty E. Look Professor of Engineering, Associate Chair of Graduate Affairs, Department of Aerospace
Engineering Sciences, University of Colorado, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO
80309-0431. AAS Fellow



Inertial
Thrusting

Electrostall
Tractor

B

Figure 1. Electrostatic Space Tug Concept Illustration.’

Electrostatic charging also offers the potential for propellantless propulsion by harnessing the
Lorentz force, which results from the interaction between a charged, moving spacecraft and a
planet’s electric field. The Lorentz force imparted onto a a spacecraft can be used for station-
keeping®® and boosting gravity assist maneuvers.!? As with the space tug concept, utilizing the
Lorentz force in this manner requires the ability to model electrostatic charge distribution on the
spacecraft.!!

All these applications require a methodology to evaluate the spacecraft electrostatic forces and
torques in faster-than-realtime numerical simulations. The Multi-Sphere-Method (MSM) is an ap-
proach to compute the force and torque with enough fidelity to be believable, but with enough speed
to be useful.!"1? In particular the Volume MSM (VMSM) approach seeks the optimal placement of
N spheres within the volume of the spacecraft whereby a small number of spheres to approximate
the electrostatic forces and torques on a charged spacecraft. However, as noted in Reference 11, the
original setup process in that work to find an optimal VMSM solution can be very challenging and
involve some hand tuning of the optimization process. This setup challenge was the key reason for
developing the Surface MSM (SMSM) approach. Here the setup process is greatly simplified at the
expense of an increased number of spheres. This paper investigates how the VMSM setup can be
automated. In particular, the uniqueness of different VMSM solutions to a given set of force and
torque truth values is investigated. A range of cost functions are explored to quantify the fit of a
given VMSM solution being considered. Different metrics can weight long- or short-range errors
differently, and can each be of interest depending on the spacecraft mission scenario.

MULTI-SPHERE METHOD OVERVIEW

One way to calculate the electrostatic forces and torques on a spacecraft is to use a commercial
FEA tool, such as ANSYS’s Maxwell 3D. However, even with relatively low accuracies, these tools
usually require on the order of minutes to complete analyses of simple two-body systems, which is
unsuitable for modeling dynamics in real-time for state estimation or control applications.

By reducing the spacecraft geometry to a collection of charged spheres, the configuration of
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Figure 2. Approximation of a satellite as a collection of charged spheres.!!

which are dependent on the geometry and conductivity of the spacecraft being modeled, MSM
can approximate electrostatic forces and torques several orders of magnitude more quickly than
commercial FEA tools with minimal decrease in the resulting accuracy.

As shown in Figure 2, MSM approximates a spacecraft as a collection of spheres with variable
positions and radii. The voltage on any sphere is a function of both its own charge and the charge
of nearby spheres. If these spheres are far enough away to be approximated as point charges, the
voltage is given by:!!
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Where ¢; and R; are the charge and radius of the i" sphere, respectively, pi, j is the center-to-center
distance between spheres ¢ and j, and ¢ is the permittivity of free space constant. If the voltages of

each sphere are given by V' = [V7, V4, ...V,,,]T and the charges are given by q = [q1, 2, ---qim] ", the
relationship between the two is

V=[C]""q 2)

where [C] is the Position Dependent Capacitance (PDC) matrix whose inverse is defined below:!!
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The voltage on each sphere can be determined as a function of various factors, such as photoelectron
current resulting from UV radiation and interactions with the plasma environment.'# For purposes
of this paper, the charged bodies are assumed to be perfect conductors. Thus, the voltage of each
sphere for a given body is the same (V; = Vj) and is equal to the voltage of the body. The PDC
matrix can be inverted to obtain the charge on each sphere. Once the charges on each sphere are
known, the forces and torques can be computed as shown in Egs. (4) and (5). An origin O at the



center of mass of the body is used for r;; the force and torque calculated about this origin are
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With minimal loss of accuracy — of a few percent or less — MSM is a promising way to solve
for the electrostatic forces and torque on a spacecraft faster than real-time. However, it relies on
knowledge of the position and size of all spheres in the model, which in previous work have been
laboriously hand tuned.'’>'2 This paper seeks to develop an automated means of determining the
position and size of these spheres, such that the force and torque calculated from the model match
closely with the data provided by a commercial electrostatic FEA tool.

MSM Capacitance Matrix Invertibility

The inverse of the PDC matrix is easily formed, but must be inverted to solve for the charges,
which are needed to compute the force and torque. Certain combinations of MSM parameters can
make this inversion difficult or even impossible. Degenerate matrices produced by these parameters
yield non-physical results, such as negative self capacitance.

One way to ensure the invertibility of a matrix is to make sure the determinant is non-zero.
This can be done analytically for some simple cases and yields relationships between MSM model
parameters that must be avoided to ensure the validity of the model. For general cases with a large
number of spheres, the condition number of the inverse of the PDC matrix may be used to measure
how close the given MSM parameters are to causing a singularity. Parameter sets that yield high
condition numbers should be avoided. The issue of how best to address such ill-conditioning of
particular MSM parameters remains an open research question. For the scope of this paper, this
issue is identified and initial MSM parameters are selected for the numerical optimizations that are
removed from such singular configurations.

SELF CAPACITANCE CONSIDERATIONS
MSM Self Capacitance Definition

The force acting on two charged objects is due to the interaction of the charges on the first object
with the strong electric field created by the charges on the second. If the voltage is known, the key
to predicting the forces and torques acting upon an object is determining the charge. This is done
using the relationship between charge and voltage known as self capacitance as seen in Eq. (6).
For an individual sphere there is an analytic form for the self capacitance (C' = 4mwepr). In the
general case, a body modeled by MSM, has a self capacitance based on the sphere geometry. The
self capacitance is the ratio of the total charge () on the object to its surface voltage V'

Q
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The total charge is given by
N
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i=1



Using Eq. (6) the charge vector is written as

N
a=> CyVj ®)

Recalling that the voltage on each sphere within the object is assumed to be the same (V; = V),
substituting Eqgs. (7) and (8) into Eq. (6) yields
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The total capacitance C' of an MSM model is the sum of the individual elements of the PDC matrix
[C]. Recall that [C] is obtained by inverting [C] ™!, defined in Eq. (3).

Self Capacitance Optimization Constraint

Previous work with MSM focused on matching forces and torques between two charged objects
separated by less than ten craft radii without regard to matching the self capacitance of the ob-
jects.'l An MSM geometry determined under these conditions will generally perform well at these
distances, but will suffer from significant errors at larger distances. As the separation distance be-
tween the two objects grows large, the objects will effectively become as isolated point spheres.
At this point, the total charge of each object is approximated with Eq. (6), which only requires
knowledge of the self-capacitance. If the MSM parameters do not yield a self-capacitance C' which
matches the self-capacitance of the actual shape, then the electrostatic force predictions are ensured
to be incorrect at large separation distances.

The proposed MSM optimization method constrains the self capacitance calculated using Eq. (9)
to be equal to the self capacitance found using an commercial electrostatic FEA tool. The three
primary benefits for using this constraint are:

e The MSM solution will automatically provide accurate results at large distances.

By enforcing fundamental physics, predicting forces in the far field will always give good
results, while still allowing the subtlety needed to model the complex interactions in the near
field.

e The MSM optimization will no longer be swayed by noisy data in the far field.

Generating or measuring truth forces and torques becomes increasingly noisy as the sep-
aration distance between charged objects increases. Fitting the MSM parameters to match
such noisy data can pose significant challenges to numerical optimization algorithms and can
reduce the accuracy of the solution. Instead, by constraining the MSM parameters to sat-
isfy the known self-capacitance of a shape, the lower quality electrostatic force and torque
solutions at larger separation distances can be ignored.

e Enforcing the self capacitance constraint eliminates one degree of freedom.

By reducing the MSM parameter search space, the computational time for the optimiza-
tion process is reduced. It goes without saying that this is desirable in the automation of
sphere geometry. However, this reduced computational time can come at the cost of slightly
decreased accuracy in cases where separation distances is small.



The self capacitance constraint can be enforced either numerically or analytically. An analytical
constraint is always more accurate than a numerical constraint. However, an analytical constraint
may not always be available. Forming the self capacitance requires inverting an N x N matrix and
summing all the elements, where N is the number of spheres in the MSM model. This can become
difficult for cases involving a large number of spheres.

MODEL PARAMETER OPTIMIZATION

An optimal MSM sphere distribution can be obtained by employing optimization techniques,
whereby the desired sphere distribution minimizes the force and torque prediction error. Optimizing
the sphere distribution uses the size and body-fixed location of each MSM sphere included in the
model as state variables. For this analysis, MATLAB’s built-in finincon optimizer is used.

Cost Functions

Optimization problems are driven by a cost function. Two cost functions were implemented and
compared in this study. The first cost function .J,j, based on the relative difference between VMSM
and Maxwell forces and torques, is defined as:

Jre] = fre] + trel (10)
n
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Where Fysy; denotes the predicted force vector at the ith comparison point, Fiyaxwely; 1S the truth
model force vector evaluated at that same comparison point, and similar definitions are made for
torque. One drawback of using relative differences in a cost function is the potential for small
absolute differences to result in large relative differences. This is very likely to happen in the far
field when the force and torque in the truth model are very small.

Consequently, the second cost function J,ps is based on the absolute difference between VMSM
and Maxwell forces and torques:

Jabs = fabs + Labs (13)
n
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By distributing the sum into the denominator, errors that occur when the FEA solution is small are
not heavily weighted. This is advantageous because when the FEA force and torque are small, there
is often a lot of noise in the solution.



To easily assess the quality of the solution, Egs. (11) and (12), which are analogous to relative
error, can be used. Since fr] and . are cumulative quantities, their averages will provide a relative
error representative of the quality of a given solution. This relative error can be multiplied by 100
to obtain a percentage error measure that is used to quantify the quality of a particular geometric
solution determined by optimization during this analysis.

PROTOTYPE CHARGED SPACE OBJECT

A convenient system to model is a cylinder, representing a defunct rocket body upper stage, and
a sphere, representing a controlled and charged space tug. The cylinder has a length of three meters
and a diameter of one meter, and the sphere has a diameter of one meter. In Reference 11 the
cylinder is approximated using three collinear spheres, as shown in Figure 5, with the end spheres
set at an equal distance away from the center sphere. The cylinder models with either two or three
collinear spheres are considered in the scope of this paper.

Electrostatic Force Truth Model

The commercial electrostatic FEA tool Maxwell 3D is used to calculate the forces and torques
between the cylinder and the sphere. Both the cylinder and the sphere are held at +30,000 Volts.
Forces and torques are calculated at multiple points as shown in Figure 3. The points are distributed
cylindrically, with radius changing by one meter and angle changing by 15° between each point.
These points can be grouped by their distance from the cylinder; each set of equidistant points is
referred to as a ring and are labeled in Figure 3.

The points included in the rings at larger distances will have smaller forces that are either negli-
gible or describable by approximating the cylinder with a single sphere. It may be unnecessary to
include these rings in the optimization process, particularly if solution quality is not reduced. Thus,
this analysis will also examine the effects of these rings on solution quality and computational time.
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Figure 3. Geometric Parameters for Maxwell Force and Torque Calculations



Figure 4. Two Sphere MSM Model of a Cylinder

Self Capacitance Matching

2-Sphere MSM Self Capacitance Consider a cylinder modeled by 2 collinear spheres of equal
radius, as shown in Figure 4. The model is described by two independent variables: the radii of
each sphere r and the distance between the two spheres p.

Eq. (9) is used to express the self capacitance of the two sphere system as

2
C = dreg— (16)
p+r
The independent variables r and p are expressed individually as
C,
_ _ PYmod (17)
2p — Ciod
7Crnod
= 18
P 2r — Cmod ( )
where Choq 1s the scaled self capacitance
C
Cmod = 4_ (19)
TéE,

Eq. (17) is used to write 7 as a function of p or vice versa with Eq. (18). Thus, there is only one
independent variable in this two sphere MSM case.

3-Sphere MSM Self Capacitance Next, a cylinder is modeled by 3 collinear spheres, as shown
in Figure 5. In this case, the identically sized end spheres are equidistant from the center sphere,
which has a different radius. Three independent variables exist in this scenario: the radii of the end
sphere r, the radius of the center sphere R, and the distance between the center sphere and the end
sphere p.

As with the 2 sphere model, there are analytic results for the self capacitance of the sphere in

terms of the axially constrained MSM sphere placement and size parameters. The self capacitance

is
p(=TrR + 2p(2r + R))

p(2p+ 1) —4rR

C = 4reg (20)



Figure 5. Three Sphere MSM Model of a Cylinder

Direct substitution yields a reduced set of unknown MSM parameters and allows the 3 MSM pa-
rameters to be expressed in terms of the other 2 and the true self capacitance using:

Chodp — 4Cmoa R + TRp — 4p2
p(4r — QCmodp — CmodT)
R = 22
Trp — 2p% — 4Chnoqr (22)
_ —(Cmoar + TrR) £ V/ (Cinodr + TrR)2 + 4(2Cmod — 41 + 2R) (4Cimoa RT)
p= 2(2Cmod — 47 + 2R)

. @)

(23)

This allows the numerical optimizer to search only 2 parameters instead of the original 3. If only
the set of three parameters (R, 7, p) are considered that satisfy the MSM self capacitance equality
constraint, all admissable MSM parameters must lie on a two-dimensional surface, as shown in
Figure 6.

Although analytical constraints exist for the restricted 2-sphere and 3-sphere MSM cases, such a
simple solution may not always exist. In the general case of N spheres, a numerical constraint must
be enforced.

Matrix Inversion

As noted in the Matrix Invertibility section, certain sets of MSM parameters can make the inverse
of the PDC difficult or impossible to invert, which yields non-physical results such as negative or
infinite self capacitance. To avoid these singularities, the determinant can be analytically constrained
to be non-zero, which yields relationships between MSM parameters to be avoided. This is done
for the 2- and 3-sphere cases considered in this paper.

2-Sphere Case For two collinear spheres of equal radius, the inverse of the PDC is given by

1 1

_ 1L |R p

1_ p
= |1 4

p R
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Figure 6. Isosurface Showing Where the Cylinder Self-Capacitance is 106.8345 pF

Where R is the sphere radius and p is their separation. The determinant of this matrix is

1 1
det([C]) = s
By ensuring R # p the matrix is invertible and MSM provides valid results. In addition, as R — p
the matrix becomes numerically ill-conditioned.

3-Sphere Case For three collinear spheres, where the outer spheres are constrained to be the
same size but the center sphere radius is free, the matrix is somewhat more complicated. The
inverse of the capacitance matrix is now given by

(25)
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Where r is the end sphere radius, R is the center sphere radius, and p is the distance from the center
of the end sphere to the center of the center sphere. The determinant is now

2p —1)(2p% +7p — 4rR)

de(c)) = =D

(26)

This determinant has two roots: 2p — r = 0 and 2p? + rp — 4rR = 0. The first one is easily
visualized as the end radius being twice the distance to the center. This means that the edge of the
leftmost sphere touches the center of the rightmost sphere. The parameter sets of both roots are
illustrated in Figure 7.

These surfaces in the 3-dimensional parameter space must be avoided to ensure model validity.
This does not reduce the degrees of freedom, but does require parameter checking.
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Figure 7. Surfaces where the determinant of the PDC Matrix is zero

OPTIMIZATION CASES

The goal of this study is to automate the process of distributing MSM spheres through the volume
of a body to best match the force and torque experienced by that body when in the presence of a
second craft. The automation process uses an optimization routine to move the center position and
set the radius of each MSM sphere. The optimization state therefore becomes the set of geometrical
parameters that describe the locations and sizes of all MSM spheres in the body. The baseline to
which new geometric parameters are compared are the numbers in Table 1, which are presented
in Reference 11. The coordinates and sphere definitions in Table 1 are based on the geometry of
Figure 5.

Table 1. Baseline Geometric Parameters

Sphere 1  Sphere 2 Sphere 3

X Coordinate (m) 0 0 0
Y Coordinate (m) -1.1454 0 1.1454
Z Coordinate (m) 0 0 0
Radius (m) 0.5959 0.6534 0.5959

The baseline geometric parameters can be expressed in the three parameter set as

R =0.6534
r = 0.5959
p=1.1454

These parameters generate a solution with a relative force error of 1.47% and a relative torque error
of 1.18%.

The initial conditions for the optimization create spheres of equal radii that have surface area
equal to the cylinder model. Under these conditions, the optimization produces solutions with

11



relative errors ranging from 1.1% to 3.9% for force and 0.1% to 4.1% for torque, depending on
the number of data-point rings used in the optimization, the inclusion of the capacitance constraint,
and the cost function used. Generally speaking, the solutions provided by this optimizer approach
are comparable to the accuracy previously achieved with the significant benefit that all solutions
are generated in less than ten seconds — orders of magnitude faster than the thousands of seconds
previously required.'?

Four cases are examined in further detail to demonstrate the flexibility of the algorithm and the
current challenges in automating sphere placement: a three sphere cylinder model with and without
the previously described capacitance constraint and a two sphere cylinder model with and without
the previously described capacitance constraint. Each case is analyzed with the relative and absolute
difference cost functions, as described by Eqgs. (10) and (13). The best results of all eight cases are
tabulated in Table 2.

3-Sphere, 3 MSM Parameters Model

The first case uses three spheres to model the cylinder and does not use a capacitance constraint,
as shown in Figure 5. The initial conditions chosen for the optimization are = R = 0.54 meters
and p = 1.5 meters.

Figure 8 plots the relative force and torque error and computational time against the number of
rings used in the optimization. It should be noted that, even if less than eight rings were used
for the optimization, the relative error is calculated by comparing the solution against all possible
data points in the eight rings. As expected, including more data in the optimization improves the
prediction over the data range considered. An important aspect of this trend is how both the force
and torque error begin to level out when more than three rings are included. This indicates that data
from outer rings could be ignored, especially since computational times increase with increased
data.

The relative difference and absolute difference cost functions complete the optimization in about
the same about of time. However, the relative difference cost function shows significantly lower
error in force and torque as the number of rings used in the optimization increases. Particularly
notable is the near-zero torque error when seven or eight rings of data are used. Because of this, it
can be concluded that the relative difference cost function is much better at matching data than the
absolute difference cost function.

3-Sphere, 2 MSM Parameters Model

The second case uses the same three sphere setup as the first, but adds an analytical capacitance
constraint as described by Egs. (21) through (23). In this case, the constraint for the end radius 7, is
implemented, leaving the center radius R and the separation distance p as the independent variables.

In Figure 9, the relative force and torque error and computational time are plotted against the
number of rings used in the optimization. Of note of the error trends under the capacitance constraint
is the force error, which remains constant regardless of the number of rings used. This is due to the
nature of the capacitance constraint, which causes the VMSM model to resemble a single point
charge at large distances. At large distances, all that is needed to model force is the capacitance of
the object.!?> While matching capacitance can model force with a high degree of accuracy, it cannot
model torque quite as well because of induced charging effects on the cylinder.

12
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Figure 8. Three Sphere VMSM Performance, Without Capacitance Constraint

With the exception of using seven or eight rings under the absolute difference cost function, the
2 Parameter Model completes the optimization more quickly than the 3 Parameter Model. This
supports the assumption that reducing the parameter search space would decrease the computation
time. Since both the 3 Parameter Model and 2 Parameter Model result in similar errors, it may be
more useful to use the 2 Parameter Model for optimizations on account of its speed.

2-Sphere 2 MSM Parameters Model

The third case uses a two sphere model for the cylinder, as shown in Figure 4, without the capac-
itance constraint. The initial conditions chosen are = 0.6614 meters and p = 1.5 meters. Because
there are only two independent variables (r and p), the optimization in this case should run much
faster than that for the unconstrained three sphere model. This is observed in Figure 10, where com-
putational time for determining the solution is under two seconds for most ring and cost function
combinations. In contrast, many of the three sphere cases, even if constrained by capacitance to use
two parameters, took more than three seconds to find a solution.

As with the three sphere models, the errors on the two sphere model, particularly for force, begin
to level off after three rings of data are used; this is especially apparent for the absolute difference
cost function. This trend indicates that not all rings are necessary to produce a solution that can
reasonably match a truth model. The relative difference cost function also provides lower errors in
torque than the absolute difference cost function, suggesting again that the relative difference cost
function is better suited for these optimizations.

The errors in the two sphere model are on the same order of magnitude as for the three sphere
model, while the optimization takes about half the time to run. This suggests that it may be more
practical to use the two sphere model in some cases, particularly where computational time is of
importance.
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Figure 9. Three Sphere VMSM Performance, With Capacitance Constraint
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2-Sphere 1 MSM Parameter Model

The fourth case uses a two sphere model for the cylinder while enforcing a capacitance constraint.
By using Eq. (23) to constrain the optimization to one independent variable r, the computational
time should decrease while having minimal effects on the errors. Figure 11 shows the error and
computational time plots.

As with the capacitance constrained three sphere model (Figure 9), the force errors in this case
are constant regardless of the number of rings used for the optimization. While it was expected
that the capacitance constraint would allow force to be accurately accounted for at large distance,
the constant errors provided by the solution were not. It appears that the capacitance of the model,
rather than the geometric sphere configuration, is key to accurately determining forces acting on a
charged object.

While capacitance cannot provide the same accuracy for torque calculations, it is still notable that
errors change very little after five rings of data are included — even dropping below 1% error. It
should be noted that such low error values may very well result from overfitting a solution to noisy
data; however, the low errors demonstrate that it is possible to obtain close matches to truth data
without using all the rings available.
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Figure 11. Two Sphere VMSM Performance, With Capacitance Constraint

2-Sphere Cost Functions

It is useful to visualize the cost functions to understand why the optimization may have chosen a
given solution and why computational times seem to differ between functions. Because it is difficult
to visualize cost functions of three parameters, only the functions for the two sphere models are
analyzed.

The cost surface for the two sphere VMSM can be visualized as shown in Figure 12, where the
darker hues indicates a lower — and thus more desirable — cost. The black line on the plot indicates
the successive steps that the optimization under the relative difference cost function follows. In
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Figure 12. Two Sphere Model Cost Surfaces

Figure 12(b), a gray line is plotted to indicate the space of all points that satisfy the capacitance
constraint.

An important aspect of the cost surface is the gradient around the minima where the solution
converges. Although it is somewhat difficult to identify with the provided visualization, the gradient
around that minima is smaller than at other points on the surface. This can make convergence on a
solution difficult, which may explain why errors sometimes increase after including more rings.

Figure 12(b) illustrates one of the strengths of using the capacitance constraint: fast convergence
on a solution. Because the search space has only one degree of freedom, it finds the local minima
very quickly. Only one point, the initial condition, lies outside the minima where the optimized
solution is found. It is not coincidental that the optimizer converged on a solution for this constrained
case more quickly than any other case analyzed. Due to the capacitance constraint, the optimizer
need only find the local minima on the capacitance line, rather than on an entire plane. A similar
scenario likely exists when constraining the search space for the three sphere from a volume to a
plane.

Summary of Cases

Table 2 lists the best fit each cost function achieved in addition to the fit from the baseline geo-
metric parameters. The most noticeable aspect of these numbers is the computational time of the
optimization — three orders of magnitude faster than what had previously been achieved. This
increased speed does not seem to have much cost associated with it, as errors are equivalent to or
better than the baseline parameters. Even faster computational times, typically about half of the
values listed here, can be achieved at an increase to the force and torque errors. This speed increase
in determining suitable MSM parameters is particularly promising for future work that will con-
sider larger numbers of MSM spheres or allow spheres to be generally distributed about the object
geometry. Both scenarios will involve a larger number of MSM parameters which is more taxing
on the setup optimization process.
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Table 2. Comparison of Optimized Parameters

Force Torque Computational Number of
Cost Function Error (%) Error (%) Time (sec) Rings Used
3 Sphere 3 Param. Abs. Difference 1.10 1.22 5.38 7
3 Sphere 3 Param. Rel. Difference  1.08 0.14 4.80 7
3 Sphere 2 Param. Abs. Difference 1.45 1.22 4.21 7
3 Sphere 2 Param. Rel. Difference 1.46 0.15 421 7
2 Sphere 2 Param. Abs. Difference 1.19 1.73 272 8
2 Sphere 2 Param. Rel. Difference 1.13 0.14 2.89 7
2 Sphere 1 Param. Abs. Difference 1.49 1.70 1.41 8
2 Sphere 1 Param. Rel. Difference  1.49 0.16 1.92 7
Baseline Geometric Parameters 1.47 1.18 4443.112 N/A

These results show that automated geometry optimization is indeed possible using the VMSM. It
should be noted that cost functions that generate very small errors should not be assumed to be the
best function. Recall that the truth model is based on a commercial electrostatic FEA tool, which
is subject to numerical error. Additionally, the percentage errors of even the worst fits do not go
beyond 4%; in actual scenarios involving electrostatic charging, uncertainties in the environment
may very well be larger than any inaccuracies introduced by these optimizations. Consequently, the
determination of the “best” cost function should weigh other factors, with computational time being
the most likely.

There is a noticeable decrease in torque error when using the relative difference cost function
when compared to the absolute difference cost function. While the exact reasons for this trend are
as yet unclear, it is an important consideration because it can provide more accurate results with
minimal increase in computation time.

In comparing computational time, there is a marked advantage when using the capacitance con-
straint, as it reduces the search space by an entire DOF. In addition the speeding up computation, the
capacitance constraint implies accurate force prediction at larger distances due to the inverse square
law reducing distant objects to single point charges. While the torque solution may be slightly less
accurate due to the lost DOF, the overall errors are still not very large, particularly when considering
the uncertainties inherent in space missions.

CONCLUSION

The methods of optimizing MSM sphere placement presented here show that it is possible to
automate the geometry optimization for the VMSM and quickly obtain accurate results. The rela-
tive difference cost function provides lower errors than the absolute difference cost function, with
similar performance in force error and computational time. Constraining the optimization so that
it matches capacitance significantly reduces the computational time and provides the added benefit
of predicting forces more accurately between distant objects. Computational time can also be re-
duced by removing distant data points from consideration in the optimization, with minimal effect
on accuracy.

The VMSM models applied here achieve accuracy comparable to baseline parameters for simple
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cylinders and when the line of the cylinder is known. Future work will investigate automated opti-
mization for more complex shapes and instances where the plane or line of the object may not be
known. It is possible that other configurations of spheres, such as non-collinear spheres or more than
three spheres, could create a more optimal solution depending on the constraints and configurations
used, thus further increasing the DOF that must be optimized.
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