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Joshua Chabot∗ and Hanspeter Schaub†
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This paper develops an analytical force and torque model for a spherical magnetic
dipole attitude control device, along with a control scheme that includes singu-
larity avoidance. The device proposed consists of a non-contact spherical dipole
rotor enclosed in an array of coils that is fixed to the spacecraft body. Excitation of
the coils as prescribed by the control law rotates the dipole rotor in such a manner
as to produce a desired reaction torque for orienting the spacecraft. The coils also
control the rotor’s position inside the spacecraft body via a separate control law
because of the non-contact nature of the device. Due to the axisymmetric field
of the dipole rotor, underactuation is possible with one device and therefore two
spherical actuators are needed for full attitude control.

INTRODUCTION

Spacecraft require a minimum of three reaction wheels for full attitude control and often have
more for redundancy. The use of spherical actuators, however, could reduce this number, resulting
in potential attitude control system mass savings, among other advantages that stem from using a
spherical momentum transfer device. Taking advantage of this spherical symmetry provides more
control authority from a single device than a reaction wheel can offer.

The design proposed here consists of a spherical dipole magnet (the rotor) surrounded by an array
of coils (the stator), as shown in Figure 1. The stator is fixed to the spacecraft body, whereas the
rotor is magnetically suspended inside the stator. Electrical current is sent to the array of coils in
such a manner as to control the spin of the rotor, along with its position inside the stator. Because the
rotor is magnetically suspended, frictional losses are negligible, potentially extending the lifespan
of the device compared to conventional reaction wheel systems where failure often comes from
mechanical contact. Mechanical contact also introduces vibrations that can be detrimental to the
science of a mission. As such, the magnetic levitation of the rotor could eliminate these unwanted
vibrations thanks to its non-contact nature and through active vibration damping.1, 2

Spherical actuators were originally proposed in the early 1960s3, 4, 5 and have gained renewed in-
terest in the past decade. As with conventional electric motors, spherical actuator designs fall under
two general categories: synchronous and asynchronous. Asynchronous motors utilize a changing
magnetic field to induce a current in a nonmagnetic rotor. The induced current interacts with the
changing magnetic field to produce a torque. Synchronous motors, on the other hand, rely on the
interaction between permanent magnets and electromagnetics, where coil excitation is timed via
control logic to produce torque. The actuator proposed here falls under the latter category.
∗Masters Student, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, and AIAA Member.
†Professor, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, and AIAA Member.
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Figure 1: Spherical Dipole Actuator with 20 Coils

The majority of research conducted so far in this area studies asynchronous-type spherical actu-
ators. Early designs propose using a combination of magnetic induction for torque production and
electrostatic force for suspending the rotor.4, 5 Later designs move away from using electrostatics
due to the large electric potentials and hard vacuums needed and instead rely purely on induced
effects for torque and suspension. More recent work focuses on developing models for the induced
fields in the rotor,6, 7, 8, 9, 10 and experimental investigations have been conducted to validate these
models and move towards real world application.11, 12

In addition to the work being done with asynchronous actuators, there is currently research into a
synchronous spherical actuator design for attitude control that relies on a rotor with eight magnetic
poles.1 Analytical force and torque models for this actuator have been developed and confirmed
through experimental investigations13, 2 and finite-element modeling.14 Also, studies examine opti-
mal stator sensor placement,14 rotor design optimization,15 back-EMF modeling,16 and eddy current
losses.17

One difficulty with an eight-pole rotor is that it cannot be fabricated from a homogeneous sub-
strate. Instead, it need be an amalgam of smaller dipole magnets that together approximate the
desired spherical magnetic field distribution. This poses a potential problem for applications in at-
titude control because of the high spin rates that are required. Because of this, fabricating such a
rotor would require precision machining of magnetic material, likely making the device costly.

The design proposed here instead uses a spherical dipole magnet as a rotor. Spherical dipole
magnets are inexpensive, readily available, and produced from a homogeneous substrate. However,
unlike an eight-pole rotor, a dipole rotor cannot always provide the desired torque due to its ax-
isymmetry. This potentially limits the attitude control capabilities from a single actuator, or leads to
underactuated control strategies. As such, a two actuator configuration is examined here in addition
to the single actuator case. Sensing and induced effects are not considered in this work, and are left
to future research.

EQUATIONS OF MOTION FOR SPACECRAFT WITH n-SPHERICAL ACTUATORS

The total angular momentum for a spacecraft with n-spherical actuators is simply the sum of the
angular momenta of the spacecraft body and the n-spherical actuator rotors,

H = HB +

n∑
m=1

Hm (1)
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where HB is the spacecraft body angular momentum and Hm are the spherical actuator momenta.
The time rate of change of angular momentum about the system’s center of mass is equivalent to
the net external torque on the system,

Ḣ = ḢB +
n∑

m=1

Ḣm = L (2)

and additionally, each spherical actuator can be treated as a separate system whose angular momen-
tum rate is caused by an external torque:

Ḣm = −um (3)

Note that the actuator torque um is negative in this instance because, as will be seen, the actuator
torque model describes the torque on the actuator coils, whereas here torque on the rotor is of
interest. Eq. (3) can then be substituted into Eq. (2) producing

ḢB −
n∑

m=1

um = L (4)

Because HB is described in the spacecraft body frame, the transport theorem must be applied to
take the inertial derivative:

Bd

dt
(HB) + ωB/N ×HB −

n∑
m=1

um = L (5)

From the definition of angular momentum about a rigid body’s center of mass and due to the fact
that the spacecraft inertia tensor is constant as seen from the spacecraft body frame, Eq. (5) may
then be rewritten as

[I] ω̇B/N + ωB/N × [I]ωB/N =
n∑

m=1

um + L (6)

where ωB/N is the spacecraft body rate vector with respect to an intertial frame and [I] is the
spacecraft inertia tensor. As can be seen from Eq. 6, the torque produced by spherical actuators can
be viewed as an external torque on the spacecraft. Additionally, Eq. (3) can be used to derive the
equations of motion for the spherical actuators. Since the inertia of a sphere is identical whether
viewed in a body or inertial frame, Eq. (3) can be rewritten as

[I]m ω̇Rm/N = −um (7)

where [I]m denotes the mth spherical actuator inertia and ω̇Rm/N the mth angular velocity with
respect to inertial.

Along with the spacecraft dynamics equations, an attitude parameterization is necessary. Modi-
fied Rodrigues Parameters (MRP) are chosen, and the MRP attitude kinematic differential equation
is given by

σ̇ =
1

4

[
(1− σTσ)I3×3 + 2σ̃ + 2σσT

]
ω (8)

where σ is the MRP attitude vector.18 To avoid the MRP singularity, the norm of σ is kept less
than or equal to unity by switching to the MRP shadow set when necessary. Finally, the following
feedback control law is used to stabilize the spacecraft relative to the attitude origin:

τ =

n∑
m=1

um = −Pσ − [D]ω (9)
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where P is a positive scalar and [D] is a positive-definite matrix. This attitude regulation control
law is globally asymptotically stabilizing if no unmodeled torques are present, which is the case
for all simulations presented here.19, 18 Note that the following developments are not tied to this
particular choice of attitude control law in Eq. (9). Rather, this proportional-deriviative regulation
control can be substituted with any desired attitude control torque expression, including a reference
tracking control. Of interest is how this desired control torque τ is generated through the rotors and
coils.

SPHERICAL ACTUATOR MODEL

The development of the force and torque model for the proposed spherical actuator begins by
examining the interaction between the rotor and an individual coil. Multiple coordinate frames are
defined, as shown in Figure 2, where B is a spacecraft body-fixed frame, R is a frame fixed to the
dipole rotor and aligned with its axis of magnetization, and Ck is the kth coil-fixed frame aligned
with the axis of the kth coil.

Figure 2: Definition of Coordinate Frames

To find the force and torque on an individual coil caused by the magnetic field of the rotor, the
Lorentz force law is first simplified by assuming there are no external electric fields present in the
system:

dFk = (ρE + J×B) dV = (J×B) dV (10)

where dFk is the differential force on the coil current density J caused by the external magnetic field
B. Eq. (10) is modified into a torque expression by taking the cross product between the position
vector and the differential force element:

dTk = R× dFk = r× (J×B) dV (11)

Next, integrating Eqs. (10) and (11) over the volume of the coil yields the total force and torque
acting on the coil:

Fk =

∫
V
J×BdV (12a)

Tk =

∫
V
R× J×BdV (12b)
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These volume integrals can then be expanded into a useful form using spherical components, pro-
ducing

Fk =

∫ Rb

Ra

∫ θb

θa

∫ π

−π
J×BR2 sin θ dφ dθ dr (13a)

Tk =

∫ Rb

Ra

∫ θb

θa

∫ π

−π
R× J×BR2 sin θ dφ dθ dR (13b)

As shown in Figure 3, parameterization with spherical components is convenient since the coil is
approximately a section of a sphere delimited by its inner and outer radii, Ra and Rb, its minor and
major central angles, θa and θb, and its angle of revolution, φ.

Figure 3: Coil Coordinate Frame

At this point in the development, it’s useful to assign coordinate frames to the vectors. Because
force and torque on a single coil are being examined, it is beneficial to express Eq. (13) in a local
coil frame:

CkFk =

∫ Rb

Ra

∫ θb

θa

∫ π

−π

CkJ× CkBR2 sin θ dφ dθ dr (14a)

CkTk =

∫ Rb

Ra

∫ θb

θa

∫ π

−π

CkR× CkJ× CkBR2 sin θ dφ dθ dR (14b)

where the position vector in the coil frame is

CkR =

R sin θ cosφ
R sin θ sinφ
R cos θ

 , (15)

and the current density vector is

CkJ =
ikN

A

− sinφ
cosφ

0

 =
2ikN

(R2
b −R2

a)(θb − θa)

− sinφ
cosφ

0

 . (16)
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In Eq. (16), ik denotes the kth coil current, N the number of turns in the coil, and A the cross-
sectional area of the coil. Additionally, the magnetic field of the dipole rotor is given by

CkB =
µ0
4π

(
3 Ckρ( Ckm · Ckρ)

ρ5
−
Ckm

ρ3

)
(17)

where ρ is the relative position between a differential coil element and the center of the rotor:

Ckρ = CkR− Ckr = CkR− [CkB] Br (18)

Here r is the position of the rotor with respect to the center of the stator and [CkB] is the rotation
matrix that transforms the rotor position from the body frame to the local coil frame. Also to
express the rotor’s magnetic field in the coil frame, the rotor’s magnetic moment vector m must be
transformed:

Ckm = [CkR]Rm (19)

Note that the third axis of the rotor frame is aligned with the rotor’s axis of magnetization. With
everything expressed in the common coil frame, the equations in (14) are integrated yielding the
force and torque on a single coil. As it stands now, the integrals in Eq. (14) cannot be solved
explicitly and must instead be integrated numerically. However, if the rotor is close to the center of
the stator, r � R and ρ → R, and with this, analytical solutions to the volume integrals can be
found. These algebraic expressions for Fk and Tk are provided in the Appendix for reference.

Finally, to get the overall force and torque produced by the spherical actuator given an arbitrary
configuration of coils, the forces and torques from each of the coils must be described in the body
frame and summed together:

Bf =

n∑
k=1

[BCk] CkFk = [KF ] i (20a)

Bτ =

n∑
k=1

[BCk] CkTk = [KT ] i (20b)

where n is the number of coils in the system, [BCk] transforms from the Ck frame to the B frame,
[KF ] and [KT ] are the 3× n force and torque characteristic matrices, and i is the n× 1 coil current
vector.1 If the rotor’s position in the stator is accounted for in the derivations, then the characteristic
matrices depend on the rotor’s position and attitude and must be numerically integrated each time
step. This numerical integration is prohibitively time-consuming for real-time application aboard
a spacecraft. However, if the rotor is close enough to the center of the stator, then the algebraic
characteristic matrices provide a sufficient approximation and can be precomputed offline, allowing
for real-time implementation.

SPACECRAFT ATTITUDE CONTROL

Now that the relationships between coil current and actuator force and torque have been found,
they are used to calculate the necessary coil current vector given a desired spacecraft torque com-
mand. For the case where only a single spherical actuator is used,[

KT

KF

]
i =

[
τ
f

]
(21)
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relates coil currents to forces and torques. Here, the rotor position control force f is given by a
closed-loop feedback control law and converges to zero as the rotor becomes centered in the stator.
A simple PD controller is chosen to provide rotor position control:

f = −KP r−KDṙ (22)

where KP and KD are positive scalar gains. The coil current vector in Eq. (21) can then be found
by applying a Moore-Penrose pseudoinverse:

i =

[
KT

KF

]+ [
τ
f

]
(23)

Because of the axisymmetry of the dipole rotor, [KT ] is rank 2, and therefore there is a null space
of torques that cannot be produced by the single actuator. In instances where a torque cannot be
produced, the pseudoinverse finds the least-squares solution to the rank deficient problem. The char-
acteristic force matrix, however, is always full rank and can therefore provide the desired position
control force.

With this, a second spherical actuator can be added to the system to remedy the rank deficiency,KT1 KT2

KF1 0
0 KF2

(i1
i2

)
=

 τf1
f2

 (24)

where the subscripts indicate the first and second actuator. The pseudoinverse can again be used to
solve for the current vectors,

(
i1
i2

)
=

KT1 KT2

KF1 0
0 KF2

+  τf1
f2

 . (25)

However, now the torque portion of Eq. (25) is rank 4, in general, and the system is overdetermined.
The pseudoinverse therefore calculates the minimum current norm solution of the system. Despite
this augmented configuration, there are instances where Eq. (25) becomes rank deficient. This
occurs when the magnetic moment vectors of the two rotors are parallel, when [KT1] = [KT2]. In
these instances, the system is equivalent to a single actuator.

To avoid alignment of the rotors, an equal magnitude and opposite sign torque can be applied
to each of the rotors that drives them apart, while at the same time inducing no net torque on the
spacecraft. This null motion torque is given by the following control law:

Ln = ±(K1 ∆φ+K2 φ̇)

(
m1 ×m2

|m1 ×m2|

)
(26)

where K1 and K2 are positive scalar gains, m1 and m2 are the rotors’ respective magnetic moment
vectors, and ∆φ is the error between the actual and desired angle between the magnetic moment
vectors. Note that this null motion control law does not guarantee the rotors will not align. Should
the rotors align, Eq. 26 encounters a singularity due to direction ambiguity of the null torque vector.
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NUMERICAL SIMULATIONS

For all simulations in this section, the parameters in Table 1 are used. The rotor is assumed to be
solid and uniformly magnetized. Additionally, only an 8-coil configuration is used because of the
simulation time required when the rotor is not assumed centered.

Table 1: Simulation Parameters

Parameter Value Parameter Value

Number of Coils 8 Rotor Mass 515 g
Windings per Coil, N 100 Rotor Magnetic Moment, m 30.4 N·m/T
Inner Coil Radius, Ra 27.5 mm Spacecraft Inertia, [I] diag([0.2 0.3 0.8]) kg·m2

Outer Coil Radius, Rb 32.5 mm Initial Attitude, σ [-0.0174 -0.1431 0.2053]
Inner Coil Angle, θa 5◦ Initial Body Rates, ω [5 -2 3] ◦/sec
Outer Coil Angle, θb 35◦ P Gain 0.008 N·m
Rotor Radius 25.4 mm [D] Gain [0.01 0.01 0.03] N·m·sec

Validation of Centered Rotor Assumption

As previously mentioned, the volume integrals in Eq. (14) require numerical integration unless
the rotor is centered within the stator. For real-time implementation, numerical volume integration
is not an option due to its prohibitive computation time. However if the rotor is sufficiently centered,
then the analytical solutions to the volume integrals are good approximations, and since the rotor’s
position is controlled, it will remain close to the center. Figure 4a shows the attitude error between
a maneuver with an off-center rotor needing numerical volume integration and the same maneuver
with the rotor assumed perfectly centered in the stator, and therefore using the algebraic expressions.
As can be seen, there are differences between the two simulations due to the initial offset of the rotor,
however the attitude differences are relatively small and converge to zero after the rotor becomes
centered. Additionally, Figure 4b displays how the rotor’s position converges to center thanks to the
position control loop. Rotor position control has been successfully demonstrated, and as such, the
rotor will be assumed centered, drastically reducing simulation run time.

(a) Centered/Off-Center Attitude Error (b) Rotor Position

Figure 4: Comparison of Centered and Off-Centered Rotor
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Single Actuator Attitude Control

Despite its inherent rank deficiency, the single actuator configuration has proven to be effective at
detumbling and pointing a spacecraft in numerical simulations conducted so far. Figure 5 illustrates
this point showing how the spacecraft attitude and body rate errors converge to zero. Along with this,
the rotor’s angular velocity converges to a steady-state value, as expected, and is due to the angular
momentum originally contained in the spacecraft body. The peak current draw for the device occurs
at the beginning of the maneuver and is 130 mA. Further investigation into single actuator attitude
control is necessary to fully understand its capabilities and limitations.

(a) Spacecraft Attitude Error (b) Spacecraft Body Rate Error

(c) Rotor Angular Velocity (d) Rotor Total Current Draw

Figure 5: Single Actuator Attitude Control Maneuver

Dual Actuator Attitude Control

Figure 6 displays the same attitude maneuver, now with two spherical actuators. As can be
seen, the controller performance is very similar to that which was provided by the single actuator.
However, the dual actuator system requires less current to each of the individual rotors and lower
total peak current – approximately 107 mA at the beginning of the maneuver. One downside to the
dual actuator configuration is that the rotors can end up in a spin configuration with high angular
velocities despite relatively low or zero total system angular momentum. This is due to the fact that
the angular momenta of the rotors can point in opposite directions, in turn canceling and conserving
total angular momentum. Additionally, the spin configuration the two rotors end up in depends on
their state at the beginning of the attitude maneuver.
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(a) Spacecraft Attitude Error (b) Spacecraft Body Rate Error

(c) Rotor Angular Velocity (d) Rotor Total Current Draw

Figure 6: Dual Actuator Attitude Control Maneuver

Null Motion Singularity Avoidance

Applying the singularity avoidance control law presented in Eq. (26) to the dual actuator system
does little to the attitude control maneuver examined so far. This is because it is very unlikely for the
two actuators to align. Also because the rotors are spinning at high angular velocities, should they
come close to aligning, it would only be for an instant. Consequently, it’s more illustrative to look
at reconfiguring the rotors for maneuver initialization. Figure 7 presents a case where the two rotors
are initially nearly aligned. The null motion control law reconfigures them such that their magnetic
moment vectors are perpendicular, and does so without imparting a torque on the spacecraft. The
control law gains were chosen to be K1 = 0.0001 N·m and K2 = 0.0001 N·m·sec.

(a) Rotor Angular Velocities (b) Angle Between Magnetic Moment Vectors

Figure 7: Rotor Reconfiguration Using Null Motion
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CONCLUSION

A spherical actuator for spacecraft attitude control has been presented that relies on a simple
dipole magnet to exchange momentum with the spacecraft. The equations of motion for this system
were derived and numerically simulated showing that the proposed actuator can indeed provide
attitude control. A single spherical actuator was first examined and was able to successfully perform
an attitude maneuver despite its inability to always produce a desired torque. Further research into
this form of underactuated control will be necessary to fully understand how effective a single
actuator can be. A dual actuator configuration was also investigated and was found to successfully
provide attitude control while also requiring less current than a single actuator. Finally, a null
motion control law was developed to avoid singularities and was able to rotate the actuators into
a more favorable configuration without imparting a torque on the spacecraft. Overall, the results
presented here show promise for spherical actuator based attitude control systems.
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APPENDIX: ALGEBRAIC FORCE AND TORQUE EXPRESSIONS

If the rotor is centered in the stator, explicit expressions for Fk and Tk exist and are given by

Fk =
ikN

A


µ0‖m‖(ln(Ra)−ln(Rb))(sin(θa)3−sin(θb)3)(C31 cos(β) sin(α)−C33 cos(α)+C32 sin(α) sin(β))

4
µ0‖m‖(ln(Ra)−ln(Rb))(sin(θa)3−sin(θb)3)(C32 cos(β)−C31 sin(β))

4

−µ0‖m‖(ln(Ra)−ln(Rb))(sin(θa)3−sin(θb)3)(C33 sin(α)+C31 cos(α) cos(β)+C32 cos(α) sin(β))

2



Tk =
ikN

A

 −µ0‖m‖(Ra−Rb)(2θa−2θb−sin(2θa)+sin(2θb))(C32 cos(β)−C31 sin(β))
8

µ0‖m‖(Ra−Rb)(2θa−2θb−sin(2θa)+sin(2θb))(C31 cos(β) sin(α)−C33 cos(α)+C32 sin(α) sin(β))
8

0


where α and β are the latitude and longitude of the coil of interest with respect to the spacecraft
body frame.
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