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Abstract
Maneuvering a spacecraft that is subject to hard rotational constraints is a nontrivial challenge. This paper exploits

the properties of the Modified Rodrigues Parameters (MRPs) to yield a nonsingular sampling of the attitude space of
a spacecraft, from which a undirected graph of constraint-compliant attitude waypoints is obtained. A path planning
algorithm is used to compute a valid waypoint-based path in the graph, and NURBS functions are used to obtain
a smooth, twice-differentiable reference trajectory from such constraint-compliant waypoint sequence. This paper
considers the fully-coupled dynamic equations of a spacecraft actuated using different sets of reaction wheels, whose
equations of motion can be integrated accurately thanks to the time-continuous nature of NURBS functions. This
leads to the definition of new cost functions for the pathfinding algorithm that are based on the actuator dynamics,
their control torque capabilities and power consumption.

1. Introduction

When a spacecraft is subject to hard rotational constraints,
reorienting the spacecraft while ensuring that the con-
straints are being respected poses significant challenges.
Such constraints often take the shape of conical keep-out
zones and keep-in zones. This is, for example, the case of
a sensitive instrument with an axisymmetric field of view,
that should never overlap with the inertial direction of a
bright celestial object such as the Sun. This case is rep-
resented by an inertial keep-out zone. Vice versa, when a
body-fixed direction in the spacecraft must remain within
a certain angular distance from a certain celestial object,
there is a conical keep-in zone. This can be the case for
solar arrays or sun sensors, that must always point at the
Sun.

Solutions to the constrained attitude maneuvering prob-
lem can be broadly categorized into two groups: potential-
function-based solutions and path-planning-based solu-
tions. Potential-function-based solutions typically fea-
ture an artificial potential function that is composed of
an attractive potential, which steers the spacecraft to-
wards the desired attitude, and of a repulsive potential,
which steers the spacecraft away from constraint bound-
aries.1–4 These approaches are usually both easy to imple-
ment and computationally fast, and they output a smooth,
time-dependent reference trajectory. On the other hand,
such approaches fail in the presence of multiple overlap-

ping constraints, oddly-shaped constraints, and particu-
lar symmetries. Path-planning-based approaches do not
usually suffer from any of these shortcomings provided
that the workspace is mapped adequately. On the other
hand, most path-planning algorithms rely on some form
of workspace discretization, which leads to a waypoint-
based solution: therefore, the reference is often provided
in terms of a series of constraint-compliant attitude way-
points, rather than a smooth, time-dependent reference
trajectory.5–8 More recent work by Tan et al.9 and Calaon
et al.10, 11 are based on the attitude discretization that
is typical of path-planning-based approaches with some
forms of waypoint interpolation or approximation to ob-
tain a time-dependent reference trajectory, which can ac-
curately be tracked by the spacecraft.12 Moreover, in these
latest approaches, information regarding the mass prop-
erties and dynamic state of the spacecraft can be incor-
porated into the pathfinding algorithm to yield an effort-
optimal solution.

This paper adopts the same attitude discretization in the
Modified Rodrigues Parameters (MRPs) space presented
in References 10, 11, but enhances the cost function for-
mulation adopted by the effort-based A* solution, to pro-
vide a more insightful estimate on the cost required to
perform the attitude maneuver. In particular, the time-
dependent nature of the fitting NURBS curves is exploited
to yield very accurate integration of the actuators’ equa-
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tions of motion, from which it is possible to compute the
instantaneous power consumption required to track the
reference trajectory.

This paper is structured as follows: Section 2. sum-
marizes the properties of MRPs, the constrained attitude
workspace sampling, and the properties of NURBS curves
as they have been used in previous contributions. Sec-
tion 3. introduces the actuator dynamics equations, and
outlines how to leverage the continuous-time properties
of NURBS curves to yield a precise integration of such
equations. Section 4., based on the enhanced model of
the spacecraft and actuators, presents new cost functions
that are used for the A* effort-based graph search. Sec-
tion 5. presents numerical results and simulations where
these cost functions are tested and compared, while con-
clusions are drawn in Section 6..

2. MRP attitude discretization and NURBS fit

2.1 Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRPs) are a set of
coordinates used to represent the attitude of a rigid body
that can rotate in the SOp3q space. One MRP set is de-
fined, from the Principal Rotation Vector (PRV) and Prin-
cipal Rotation Angle (PRA) with respect to a reference
orientation pê,Φq, as:

σ “
1

1` cospΦ{2q

$

&

%

e1 sinpΦ{2q
e2 sinpΦ{2q
e3 sinpΦ{2q

,

.

-

“ ê tan

ˆ

Φ

4

˙

.

(1)
Equation (1) shows that the MRP formulation, being a
minimal 3D set, has a singularity at Φ “ ˘2π, which
describes rotations of ˘360 degrees from the reference
attitude. Such singularity can be avoided considering the
shadow set pê,Φ1q, with Φ1 “ 2π´Φ, describing the same
attitude with respect to the reference, but performing the
‘long’ rotation, and assuming, without loss of generality,
that 0 ď Φ ď π and π ď Φ1 ď 2π. This gives the shadow
MRP set:

σS “ ê tan

ˆ

Φ1

4

˙

“ ´
σ

σ2
(2)

where σ2 “ }σ}2. Analyzing Equations (1) and (2) it is
possible to observe that all the MRP sets contained within
a unit sphere centered at the origin represent the space of
all possible short rotations (|Φ| ď π) from the reference,
whereas the points that lie outside the unit sphere repre-
sent the respective long rotations. Because all the existing
attitudes, except rotations of Φ “ 0,˘2π, are mapped
twice into MRP space, it is possible to restrict the opera-
tional domain to the points that lie within the unit sphere.
This automatically removes the singularity from the oper-
ational domain of this paper. Rotations of Φ “ 0,˘2π are
only mapped to the origin of the MRP space, which is also
included in the unit sphere. It should be noted that, on the

other hand, this operation introduces a discontinuity in the
attitude description: when a rotation larger than 180 de-
grees occurs, the relative MRP set approaches the bound-
ary of the unit sphere and, after intersecting it, it ‘reap-
pears’ on the diametrically opposite side of the sphere.

The correlations between MRP derivatives 9σ and :σ
and the spacecraft’s angular rate and acceleration vectors
BωB{N and B 9ωB{N with respect to the inertial frame N ,
expressed in the spacecraft’s body frame B, are presented.
Angular rates and accelerations are always intended as
those of the body frame with respect to the inertial frame,
and are expressed in body-frame coordinates, therefore,
for ease of notation, such vectors are from now on referred
to asω and 9ω. The differential kinematic equations for the
angular rates are:

9σ “
1

4
rBpσqsω (3)

ω “ 4rBpσqs´1 9σ (4)

where the rBpσqs and rBpσqs´1 matrices are:

rBpσqs “ p1´ σ2qrI3ˆ3s ` 2rσ̃s ` 2σσT (5)

rBpσqs´1 “
1

p1` σ2q2
rBpσqsT (6)

and rσ̃s is the skew-symmetric matrix obtained from σ.
The equations for the angular accelerations are obtained
differentiating Equations (3) and (4):

:σ “
1

4

´

rBpσqs 9ω ` r 9Bpσ, 9σqsω
¯

(7)

9ω “ 4rBpσqs´1
´

:σ ´ r 9Bpσ, 9σqsrBpσqs´1 9σ
¯

. (8)

where:

r 9Bpσ, 9σqs “ p´2σT 9σqrI3ˆ3s`

` 2r 9̃σs ` 2pσ 9σT ` 9σσT q. (9)

More details on MRPs and their properties are found in
Reference 13.

2.2 Workspace discretization and constraint representa-
tion

The attitude space is restricted to a unit MRP sphere
centered at the origin. Such sphere is samples with a
uniform, 3D cartesian grid consisting of equally-spaced
nodes. Each node is connected to a maximum of 26 neigh-
boring nodes. This does not strictly apply to boundary
nodes, placed along the σ “ 1 boundary of the sphere:
such nodes, additionally, are connected to the neighbor-
ing nodes of their respective shadow set nodes to allow
for the discontinuity around Φ “ ˘π. The combination
of nodes and connecting edges constitutes an undirected
graph that can be searched for a valid path between the
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starting node (initial attitude) and goal node (final atti-
tude). Such path, in its coarse form, is just a sequence
of waypoints. Figure 1 shows the discretized sphere with
two paths, one that features a discontinuity and one that
does not. N , defined as the number of nodes per semi-
axis, parameterizes the grid density. Figure 2 shows how
a set of three keep-out zones map to the equivalent obsta-
cles in MRP space: the nodes falling into such keep-out
zones are removed from the graph and therefore automat-
ically avoided by the pathfinding algorithm.

For a more thorough description of the MRP discretiza-
tion, see Reference 10.

2.3 Waypoint fitting via NURBS curves

NURBS (Non-Uniform Rational B-Spline) curves are
parametric, piecewise polynomial functions that are par-
ticularly suitable to approximating large sets of data with-
out diverging. The piecewise nature of these curves makes
it such that the polynomial order p is chosen by the user,
instead of being determined by the number of data to fit-
ted.14, 15 Moreover, a NURBS curve of degree p is Cp´1:
in this paper, the order used is p “ 4, which is enough to
ensure the continuity and differentiability of the attitude,
angular rates and angular accelerations of the spacecraft
at all times. The general expression of a NURBS curve is:

σpuq “
n
ÿ

i“0

Ni,ppuqPi (10)

with u P r0, 1s being the dimensionless time parameter
along the curve, Pi are the n` 1 control points, that must
be computed, and Ni,ppuq are the basis functions of order
p whose linear combination constitutes the curve. The
basis functions are computed using De Boor’s recursive

1

-1

σ2

σ11

N = 6-1

Fig. 1: 2D MRP grid with two shortest-distance paths: i) green:
no MRP discontinuity: ii) purple: MRP discontinuity10

algorithm:16

Ni,0puq “

"

1 if ui ď u ă ui`1

0 otherwise

Ni,ppuq “
u´ ui

ui`p ´ ui
Ni,p´1puq

`
ui`p`1 ´ u

ui`p`1 ´ ui`1
Ni`1,p´1puq.

(11)

To compute the basis functions, it is also necessary to de-
fine the m` 1 knots:

U “ t0, ..., 0
l jh n

p`1

, up`1, ..., um´p´1, 1, ..., 1
l jh n

p`1

u (12)

and the dimensionless times ūk for k “ 0, ..., q with q`1
being the number of waypoints, at which each waypoint
is encountered along the curve.

Four control points, P0, P1, Pn´1 and Pn are always
determined based on the knowledge of the initial and final
attitude, σ0 and σq , and from the initial and final angu-
lar velocities ω0 and ωq , from which MRP rates σ10 and
σ1q are obtained using Equation (3). With these pieces of
information the following 4ˆ 4 system is set up:

$

’

’

&

’

’

%

N0,pp0qP 0 “ σ0

N 10,pp0qP 0 `N
1
1,pp0qP 1 “ σ10

N 1n´1,pp1qP n´1 `N
1
n,pp1qP n “ σ1q

Nn,pp0qP n “ σq

(13)

where the Ni,ppuq
1 terms are the derivatives of the basis

functions. The remaining n´ 3 control points can be ob-
tained through a linear system of the form:

NP “ ρ (14)

where P is a n´ 3 vector, σ is a q ´ 1 vector, and N is a
q´ 1ˆn´ 3 matrix whose entries are the basis functions
Ni,ppuq. When the number of control points is chosen
such that n “ q ` 2, the system in Equation (14) is deter-
mined and the solution results in perfect interpolation. Al-
ternatively, the system can be solved via pseudo-inverse,
in which case a least-squares fit of the waypoints is ob-
tained. It should be noted that Equations (13) and (14)
actually represent 3 equations each, given that the control
points exist in three-dimensional space.

More information on how to fit NURBS curves to MRP
waypoint sequences can be found in References 10, 11.

3. Actuator dynamics

In 10, 11 the control effort is defined based on the Euler’s
equations of motion:

L “ rIs 9ω ` ω ˆ prIsωq (15)
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Fig. 2: Three general keep-out constraints, β “ 20 degrees10

with rIs being the inertia tensor of the spacecraft ex-
pressed in the body frame. The formulation in Equa-
tion (15), however, only accounts for the control effort re-
quired to track the reference trajectory based on the space-
craft’s inertia properties, but it does not consider the ac-
tuators that deliver the torque, nor their dynamics and in-
ertias. For a spacecraft with M reaction wheels and no
external disturbances, the equations of motion are given
by:13

rIRW s 9ω “ ´ω ˆ prIRW sω ` rGsshsq ´ rGssus (16)

where rGss “ rĝs1 , ..., ĝsM s is a 3 ˆM matrix contain-
ing the body-frame directions of the RW spin axes in its
columns. The term rIRW s is used to account for the iner-
tias of the wheels as they rotate with the spacecraft, and it
is computed as:

rIRW s “ rIs `
M
ÿ

i“1

Iwt
pĝti ĝ

T
ti ` ĝgi ĝ

T
giq (17)

where Iwt
is the inertia of the axisymmetric wheel about

a transverse axis, and ĝti and ĝgi are the other two axes
of the reaction wheel frame. Moreover:

hs “

$

’

&

’

%

Iws
pωs1 ` Ω1q

...
IwspωsM ` ΩM q

,

/

.

/

-

with ωsi “ ĝ
T
siω (18)

is the M -dimensional vector containing the angular mo-
menta of each wheel. In these expressions, Ωi are the
relative angular velocities of the wheels with respect to

the spacecraft. The assumption is made that all wheels
have the same inertia Iws about the spin axis. us is a M -
dimensional vector containing the actuating motor torques
to each reaction wheel. The motor torques as functions of
time required to track the trajectory can be computed as:

us “ ´rGss
T
`

rGssrGss
T
˘´1

prIRW s 9ω`

`ω ˆ prIRW sω ` rGsshsqq (19)

where the minimum-norm solution is computed, using the
pseudo-inverse of rGss, in the presence of a redundant
(M ą 3) reaction wheel set. With exactly three reaction
wheels, the matrix rGss is invertible, assuming that the
spin axes of the wheels are linearly independent. For re-
dundant sets of reaction wheels, other solutions can be
adopted other than the minimum norm, given that the
problem of mapping a three-dimensional torque onto a
four or more spin axes is underdetermined. Another ap-
proach, for example, allows to compute the motor torques
that minimize the instantaneous wheel power consump-
tion.17 The motor torques obey the following dynamic
equation:

us “ Iws

´

9Ωi ` rGss
T 9ω

¯

(20)

which applies to each one of the reaction wheels. Equa-
tion (19) allows to compute the wheel torques required
to track the reference trajectory; subsequently, inverting
Equation (20) gives the derivative of the wheel speeds 9Ω.
Knowing the wheel speeds at the initial time Ωpt0q, it is
possible to apply the knowledge of the wheel accelera-
tions to integrate the wheel speeds over time. A simple

IAC-22,C1,2,5,x68843 Page 4 of 10



73rd International Astronautical Congress, Paris, France, 18-22 September 2022.
Copyright ©2022 by the International Astronautical Federation. All rights reserved.

forward Euler integration method gives:

Ωptn`1q “ Ωptnq ` ptn`1 ´ tnq 9Ωptnq (21)

however, such simple approach can often yield numeri-
cally imprecise results. Specifically, when tracking a rest-
to-rest maneuver with wheels initially at rest, it is ob-
served that the Euler integration results in nonzero final
wheel speeds, due to numerical errors. The final wheel
speeds being nonzero means that the total angular mo-
mentum of the spacecraft system is not conserved, in the
absence of an external torque. A more robust integra-
tion technique is obtained by means of a 4th-order Runge-
Kutta (rk4) algorithm. For this method, let’s define the
function 9Ω “ fpt,Ωq as a combination of Equations (19)
and (20):

fpt,Ωq “ ´
rGss

T
`

rGssrGss
T
˘´1

Iws

prIRW s 9ω`

`ω ˆ prIRW sω ` rGsshsqq ´ rGss
T 9ω (22)

where the contribution of the wheel speeds Ω is included
in the hs term, as per Equation (18). Knowing the wheel
speeds at the intant Ωptnq “ Ωn, the integration proceeds
calculating the four coefficients:

k1 “ fptn,Ωnq

k2 “ f

ˆ

tn `
tn`1 ´ tn

2
,Ωn ` k1

tn`1 ´ tn
2

˙

k3 “ f

ˆ

tn `
tn`1 ´ tn

2
,Ωn ` k2

tn`1 ´ tn
2

˙

k4 “ f ptn`1,Ωn ` k3ptn`1 ´ tnqq

(23)

from which the integrated wheels speeds at instant tn`1

are obtained as:

Ωptn`1q “ Ωptnq ` ptn`1 ´ tnq
k1 ` 2k2 ` 2k3 ` k4

6
.

(24)
Once the equations of motion of the reaction wheels are
integrated, it is possible to define the instantaneous power
required by the motor torque to actuate the wheels:

Wi “ usiΩi. (25)

In general,Wiptq can be either positive or negative, where
Wi ą 0 indicates that the wheel is acting as a power load,
thus absorbing power from the spacecraft, while Wi ă 0
that the wheel is acting as a power source. This is only
realistic for systems with regenerative wheels, where the
power used to brake the wheel’s speed can be harvested
and transferred back to the spacecraft.18

Figure 3 shows an example of a constraint-compliant
reference trajectory computed using the metric-based A*
algorithm. This simpler, faster version of A* computes

a solution based on the distance between nodes in MRP
space, which means that the trajectory is not effort-
optimal. Such trajectory is a rest-to-rest maneuver with
an almost-constant angular rate norm of }ω} “ 0.03
rad/s, performed with a sensitive Star Tracker with a field
of view of 20 degrees along the b̂x body axis, and two
inertially-fixed bright celestial objects. Figure 4 shows
the dynamics of the reaction wheels used to actuate the
spacecraft. In particular, subfigure (a) is obtained using
three RWs aligned with the principal inertia axes of the
spacecraft, whereas subfigure (b) is obtained assuming a
redundant set of four reaction wheels, along the positive
and negative b̂x and b̂y semiaxes, and with a tilt angle
of 30 degrees towards the positive b̂z semiaxis. In both
cases, all RWs are actuated from an initial rest condition.
As a proof of concept, it is possible to observe that all re-
action wheel speeds converge to Ω “ 0 at the end of the
maneuver: this is because the total angular momentum of
the spacecraft and wheels system is zero. Since the final
angular rate of the hub is zero, the wheel speeds also go
to zero to ensure that the angular momentum is conserved.
This is strictly true for the case with three reaction wheels.
In the case with four reaction wheels, it could be possible
to obtain nonzero final angular rates, for which the total
cumulative angular momentum of the system is still zero:
this could happen using a different torque mapping than
the one presented in Equation (19), due to the existence of
a one-dimensional null-space for the reaction wheel set.17

The final wheel speeds are still affected by integration
errors; however, such integration errors are as small as
10´4 rad/s.

4. Effort-based graph search

The effort-based A* algorithm is outlined in Reference 10
and it uses intermediate trajectories to estimate the con-
trol effort required to track such trajectories. The con-
trol effort is used as the cost function to drive the search
of the A* algorithm. The search is performed starting
from the initial node σ0 and exploring the neighboring
nodes that are the most likely to yield the cost-optimal
path. When the n-th node σn is being explored, an inter-
mediate NURBS trajectory is computed using the set of
waypoints tσ0, ...,σn,σtu, with σt being the target atti-
tude. The cost function is defined as the sum of the cost-
to-current-node gpnq and a heuristic cost-to-goal hpnq. In
Reference 10, 11 this cost function is defined as the inte-
gral over the trajectory time of the control torque defined
in Equation (15):

C0 “ ppnq “ gpnq ` hpnq “

ż T

0

}L}dt (26)

where ppnq denotes the total priority of the node. As pre-
viously mentioned, the expression in Equation (15) is in-
accurate, as it only factors in the spacecraft’s inertias and
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Fig. 4: Wheel speeds, wheel control torques and power required to track the trajectory in Figure 3

the tracked angular rates and accelerations of the hub, but
not the actuators’ inertias and angular momentum contri-
butions. In this section, new cost functions are defined in
order to factor the actuator dynamics into the effort-based
graph search. The control-based cost functions can be en-
hanced using the result in Equation (16):

C1 “

ż T

0

}Lr}dt “
ż T

0

}rGssus}dt

“

ż T

0

}rIRW s 9ω ` ω ˆ prIRW sω ` rGsshsq}dt

(27)

where the reaction wheels, their inertias, and the momen-
tum build up on them are accounted for in the control
torque Lr.

The cost function can be modeled after the amount of
energy required to actuate the spacecraft, obtained as the
integral of the motor power in Equation (25). In this case,
it is important to define what the motor power describes
in terms of “cost” to the spacecraft’s power system. With
non-regenerative wheels, power is consumed by the mo-
tor torque to accelerate the wheels (Wi ą 0); when the
wheels brake (Wi ă 0), the energy dissipated in the brak-
ing is lost. In this case, therefore, it makes sense to esti-
mate the cost by integrating only over the time intervals
in which the wheel powers are positive. For a set of M
wheels, this can be done as:19

E “
M
ÿ

i“1

«

ż T

0

1

2
pWi ` |Wi|qdt

ff

. (28)
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In a case with regenerative wheels, the energy released
by the wheels during the braking phase can be harvested
and given back to the spacecraft. This means that the cost
function should account for positive contributions due to
the energy used to accelerate the wheels, minus the energy
that is given back when decelerating the wheels. Assum-
ing to have a regeneration efficiency factor 0 ď η ď 1,
the energy-based cost function for a general regenerative
wheel is computed as:

C2 “

M
ÿ

i“1

«

ż T

0

ˆ

1` η

2
Wi `

1´ η

2
|Wi|

˙

dt

ff

, (29)

where for η “ 0 the case with zero regenerative capability
is obtained. Thanks to some energy principle considera-
tions, it is possible to observe that the energy-based cost
function C2 with perfect power regeneration is not suit-
able for all implementations. Specifically, with perfect
power regeneration, it is:

C2 “

ż T

0

Iws
pus ¨Ωq dt

“

ż T

0

Iws

´

9Ω` rGss
T 9ω

¯

¨Ωdt

“ Iws

ż T

0

Ω ¨ dΩ` Iws

ż T

0

Ω ¨ rGss
T dω

“
1

2
IwsΩpT q ¨ΩpT q ´

1

2
IwsΩp0q ¨Ωp0q

`ΩpT q ¨ rGss
TωpT q ´Ωp0q ¨ rGss

Tωp0q.

(30)

For a rest-to-rest maneuver, the total kinetic energy of the
reaction wheels is likely to remain the same, as shown in
Figure 4. This means that, for a case with perfect power
regeneration (η “ 1), it is also C2 “ 0. This means that
using the C2 cost function would be inconclusive, since
all the trajectories would have the same zero cost, and the
algorithm would not be able to prioritize any path over the
others.

5. Numerical results

This last section implements the algorithms highlighted so
far, and aims to test the validity of the method as well as to
provide a comparison between results obtained using the
different cost functions. The spacecraft properties used in
the simulations are the following:

BrIs “

»

–

1700 0 0
0 1700 0
0 0 1800

fi

fl kg/m2 (31)

Iws “ Iwt “ 0.16 kg/m2. (32)

Simulations are set up for the spacecraft performing a
non-rest-to-rest maneuver. In the first two cases, (a) and
(b), the spacecraft is equipped with three reaction wheels

aligned with the principal body axes; in the latter two,
(c) and (d), the spacecraft is equipped with four reaction
wheels with the same configuration as described in Fig-
ure 4. For all four cases, the effort-based A* graph search
is run with the three cost functions defined above: C0,
C1 and C2. The results obtained with the cost function
C0 are provided with the only scope of outlining how the
newer approach is superior: in fact, in all four cases, the
C0 optimal solution is always associated with a higher
C1 cost than the C1-optimal solution. Because the lat-
ter is actually more accurate, it should always be pre-
ferred. Table 1 summarizes, for all four scenarios, the
results obtained using each cost function as the driver for
the effort-based A* solution, where zero power regener-
ation is assumed (η “ 0). For each optimal solution, all
three cost functions are evaluated and reported in the table
for comparison. The different trajectories of the sensitive
boresight are shown in Figure 5. For case (a) only, the
C1-optimal and the C2-optimal trajectories coincide. In
cases (a), (b) and (c), the inertia of the spacecraft plays
the major role in determining the initial direction of the
trajectory: the component along the b̂z axis of the initial
angular velocity makes such that all the effort-optimal tra-
jectories follow, at least initially, that direction. Figure 5
(d), on the contrary, shows a new, interesting behavior:
the C0-optimal trajectory around t “ 0 moves in a di-
rection that is opposite to that of the C1- and C2-optimal
trajectories. This highlights how the dynamics of the ac-
tuator can contribute significantly to the momentum and
energy of the system, to the point where the effort com-
puted based only on the properties of the spacecraft and
the reference trajectory (C0 function) can be a deceiving
metric. For case (c), it is possible to observe that the C2-
optimal solution is, in fact, not optimal with respect toC2,
as the C2 value computed for the C1-optimal solution is
actually better. It can occasionally happen that these al-
gorithms compute a sub-optimal solution: this is due to
the way that NURBS curves affect the the update of the
node priority inside the A* algorithm. It can happen that
an intermediate trajectory, which would ultimately lead
to the cost-optimal path, is associated with an intermedi-
ate cost that is higher than other suboptimal trajectories,
therefore forcing the algorithm to explore other areas of
the graph. This phenomenon, however, happens around
solutions that are relatively close in cost to one-another.
In this case, for example, the difference between the two
is less than 1.5%.

The same four scenarios can be run with theC2-optimal
algorithm, using varying levels of energy regeneration
(0 ă η ď 1). The results are that, while the outputC2 cost
is smaller for increasing values of η, as expected, the op-
timal trajectories for each case coincided with the trajec-
tories computed using the C2-optimal algorithm with no
power generation (η “ 0). The reason why this happens is
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Table 1: Simulation result data

(a) ω0 “ r0, 0, 0.03s rad/s Ω0 “ r0, 0, 0s rad/s

C0-optimal: C0 = 168.26 Nms C1 = 210.51 Nms C2 = 20297.77 J

C1-optimal: C0 = 233.43 Nms C1 = 195.68 Nms C2 = 18857.63 J

C2-optimal: C0 = 233.43 Nms C1 = 195.68 Nms C2 = 18857.63 J

(b) ω0 “ r0, 0, 0.03s rad/s Ω0 “ r500, 0, 0s rad/s

C0-optimal: C0 = 168.26 Nms C1 = 387.88 Nms C2 = 75831.74 J

C1-optimal: C0 = 239.39 Nms C1 = 260.73 Nms C2 = 51244.46 J

C2-optimal: C0 = 256.60 Nms C1 = 333.95 Nms C2 = 49957.61 J

(c) ω0 “ r0, 0, 0.03s rad/s Ω0 “ r100,´200, 0, 400s rad/s

C0-optimal: C0 = 168.26 Nms C1 = 207.82 Nms C2 = 27733.80 J

C1-optimal: C0 = 168.26 Nms C1 = 194.27 Nms C2 = 27116.57 J

C2-optimal: C0 = 233.43 Nms C1 = 245.10 Nms C2 = 27458.55 J

(d) ω0 “ r0.03, 0, 0s rad/s Ω0 “ r500,´200,´300, 400s rad/s

C0-optimal: C0 = 179.31 Nms C1 = 692.16 Nms C2 = 188392.80 J

C1-optimal: C0 = 274.19 Nms C1 = 497.47 Nms C2 = 132997.65 J

C2-optimal: C0 = 275.68 Nms C1 = 503.94 Nms C2 = 121433.82 J

probably that the amount of energy that is regenerated is a
function of the initial and final states only. Therefore, the
change in the cost function makes such that the node pri-
ority values in the A* algorithm change in absolute terms,
but the priority order between them remains the same. In
conclusion, the output of the effort-based graph search al-
gorithm is the same. A more thorough analysis is needed
to understand, from an energy and momentum balance
perspective, why this happens.

6. Conclusions

This paper proposes a path-planning-based approach to
maneuver a spacecraft that is subject to rotational con-
straints, in the form of keep-out and keep-in constraints.
The solution is obtained applying an efficient graph-
search algorithm that uses different cost functions to prior-
itize the search in the direction that is most likely to yield
a cost-optimal solution. Such cost functions are mod-
eled after the combined dynamics of the spacecraft and
the momentum exchange devices that produce the internal

torques required to perform the maneuver. Emphasis is
given to the nature of the NURBS curves used to convert a
sequence of constraint-compliant attitude waypoints into
smooth, time-dependent trajectories: this makes it pos-
sible to obtain a very precise integration of the actuators’
equations of motion, by means of a 4th-order Runge-Kutta
integrator.

Numerical results show how the enhanced const func-
tions, which include actuator dynamics, always outper-
form the cost function used in previous contributions,
where such dynamics was neglected. One out of four
cases reported shows that one of the trajectory is subopti-
mal with respect to the cost function that it was optimized
for: this exposes some flaws in the methodology that will
be addressed in the future; however, it seems that sub-
optimal behavior only in solutions that are very close to
optimal, which further shows the validity of the method.
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Fig. 5: Inertial trajectories of the sensitive boresight in different simulation scenarios
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