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CONSTRAINED ATTITUDE PATH PLANNING VIA LEAST
SQUARES MRP-BASED NURBS CURVES

R. Calaon*and H. Schaub†

Maneuvering a spacecraft that is subject to orientation constraints is a nontrivial
problem. Such orientation constraints can consist of, but are not limited to, keep-in
zones that a certain body-fixed direction in the spacecraft must remain within, or
vice versa, keep-out zones that a certain body-fixed direction must stay out of. This
paper proposes a solution to the constrained attitude maneuvering problem apply-
ing path-planning algorithm to an undirected graph consisting of nodes sampled
in the 3D Modified Rodrigues Parameters (MRPs) attitude space. Furthermore,
this paper investigates the use of Non-Uniform Rational Basis Spline (NURBS)
curves to obtain a smooth, time-dependent and twice-differentiable attitude refer-
ence trajectory from a sequence of constraint-compliant attitude waypoints. Dif-
ferent NURBS curves are presented an their performances compared in order to
yield and effort-optimal solution.

INTRODUCTION

Constraints in a spacecraft’s orientation often present challenges in space missions, as they make
maneuvering a spacecraft a nontrivial problem. These hard orientation constraints can be catego-
rized in keep-out constraints and keep-in constraints. Keep-out constraints describe the problem
where a body-fixed direction in the spacecraft must stay away from a certain inertial direction. This
can be the case for a sensitive instrument, such as a camera or a star tracker, that must not point at
a bright celestial object like the Sun. Often, such instruments have a certain field of view, which
means that the keep-out zone consists of a cone in inertial space around the direction of the bright
celestial object. Keep-in constraints represent the opposite problem, where the spacecraft is required
to maneuver while maintaining a certain body fixed direction within a certain angular distance from
an inertial direction. This can be the case for sun sensors, which must be able to see the Sun within
their field of view at all times, or solar panels, for which the sunlight incidence angle must remain
within certain bounds to ensure continuous power generation.

The solutions to the constrained attitude maneuvering problem that are found in literature can be
broadly categorized into two groups: potential-function-based and path-planning-based. Solutions
that rely on potential functions typically consist of an attractive potential, that causes the output
control law to steer the spacecraft towards the desired attitude, and a repulsive potential, whose
output control component steers the spacecraft away from the keep-out zone or the boundaries of
the keep-in zone.1–4 Such approaches are straightforward to implement and computationally cheap,
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but they can fail in the presence of complex geometries and/or overlapping constraints: whenever
the resulting potential has local minima other than the desired target attitude, they can cause the
spacecraft to remain stuck in the wrong configuration. Path-planning based approaches, on the
other hand, usually rely on some sort of discretization of the attitude space to build a graph of
constraint-compliant nodes, which can be navigated from the initial to the target attitude.5–7 In
these cases, graph-searching algorithms such as depth-first,8 breadth-first9 or A*10 are applied to
navigate such graphs. In different approaches, the attitude space sampling is not deterministic, but
rather stochastic: for example, Probabilistic RoadMaps11 sacrifice the completeness of the attitude
space mapping in exchange for faster execution times. These latter approaches do not suffer the
problem of local minima. However, all they typically provide is a sequence of constraint-compliant
attitude waypoints, which means that there is no further information about the attitude as a function
of time or the angular rates required along the maneuver. Some recent contributions by Tan et al.12

and Calaon et al.13 provide solutions based on attitude sampling, combined with some form of
interpolation to obtain a smooth reference trajectory from a sequence of attitude waypoints.

This paper is based on the Modified Rodrigues Parameters (MRPs) nonsingular attitude dis-
cretization presented in Reference 13. The focus is on the second part of the problem, which is
how to obtain a smooth reference trajectory from a sequence of attitude waypoints. Reference 13
uses Non-Uniform Rational Basis Spline curves to obtain a twice differentiable reference trajectory
that precisely interpolates all the baseline waypoints in the path provided by the graph-search al-
gorithm. While effective, this approach displays some suboptimal behaviors that can be tied to the
nature of the interpolating function: as the grid density N is increased to obtain a more accurate
mapping of the obstacles, the function presents some parasitic oscillatory behavior to meet the re-
quirement of interpolating every waypoint. These oscillations, ultimately, cause the total control
effort required by the trajectory to be suboptimal, as mentioned in Reference 13 and highlighted by
simulations in Reference 14. This paper proposes a different type of NURBS curve that performs a
least-squares fit of the waypoints and the desired angular rates along the trajectory, in order to obtain
a trajectory that still meets the requirements, but is desensitized with respect to the grid points and
grid density. The goal is to achieve a smoother reference trajectory that requires a smaller control
effort to be tracked by reducing the dependence on the chosen waypoints.

This paper is structured as follows: first, an overview of MRPs and their key properties and
equations is given, together with a brief description of the attitude discretization used in this paper.
Secondly, the requirements for the reference trajectory are defined, and the new Least Squares ap-
proximating NURBS is derived mathematically. The two NURBS curves, the interpolating curve
and the LS approximating curve are compared to one-another in three different scenarios, to com-
pare their performance with baseline A* solutions. Finally, the effort-based A* is applied to the
same three scenarios and incorporating the two NURBS curves, to benchmark the performance of
the two versus different grid density levels.

MRP WORKSPACE DISCRETIZATION

Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRPs) are a 3-dimensional coordinate set used to represent
the attitude of a spacecraft that is able to rotate in the SO(3) space. MRPs can be defined from the
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corresponding set of Principal Rotation Vector (PRV) and Principal Rotation Angle (ê,Φ) as:

σ =
1

1 + cos(Φ/2)


e1 sin(Φ/2)
e2 sin(Φ/2)
e3 sin(Φ/2)

 = ê tan(Φ/4). (1)

Being a minimal set, MRPs present a singularity. As Equation (1) shows, such singularity appears
for Φ = ±2π, which corresponds to a rotation of 360 degrees from the reference attitude. MRPs
can be visualized in a 3D cartesian space, where the origin represents a null rotation with respect to
the reference attitude, whereas every point located at an infinite distance from the origin describes
a rotation of |Φ| → 2π from the origin. Moreover, for Φ = ±π it is σ = ‖σ‖ = 1, therefore
all the points in MRP space that lie on a unit sphere centered at the origin represent 180 degree
rotations from the reference attitude. For every principal elements set (ê,Φ), it is possible to define
a shadow set (ê,Φ′), with Φ′ = 2π−Φ, which represents the same attitude. Assuming without loss
of generality that 0 ≤ Φ ≤ π, the standard set (ê,Φ) represents the short rotation from the reference
to the target attitude, whereas the shadow set (ê,Φ′) represents the long rotation (π ≤ Φ′ ≤ 2π).
This property can be exploited to obtain the shadow MRP set:

σSi =
ei sin(Φ′/2)

1 + cos(Φ′/2)
=

ei sin(Φ/2− π)

1 + cos(Φ/2− π)
=
−σi
σ2

for i = 1, 2, 3. (2)

From Equations (1) and (2) it can be shown that every MRP set obtained from the short rotation lies
within the unit sphere in MRP space, whereas when the long rotation is chosen, the corresponding
shadow MRP set lies outside of said unit sphere. This property makes MRPs a redundant set of co-
ordinates, where every possible rotation in SO(3) (except the 0 and 360 degree rotation) is mapped
to two distinct MRP sets in R3. This is a key property that is exploited in this paper, as it allows
to represent the attitude space with a unit sphere centered in the origin of the MRP space. This can
be done without loss of completeness, since the unit sphere completely describes the attitude space,
and at the same time it avoids the singularity in the MRP formulation, which does not appear for
points that lie inside the sphere.

The time derivatives of MRP sets σ̇ and σ̈ can be correlated to the spacecraft’s angular rate
and acceleration vectors BωBN and Bω̇BN with respect to the inertial frame N , expressed in the
spacecraft’s body frame B. For ease of notation, such vectors will be referred to as ω and ω̇ in the
following equations. The differential kinematic equations for the angular rates are:

σ̇ =
1

4
[B(σ)]ω (3)

ω =
4

(1 + σ2)2
[B(σ)]T σ̇ (4)

where the [B(σ)] matrix is:

[B(σ)] = (1− σ2)[I3×3] + 2[σ̃] + 2σσT (5)

and [σ̃] is the skew-symmetric matrix obtained from the 3D vector σ. The equations for the angular
accelerations are obtained differentiating Equations (3) and (4):

σ̈ =
1

4

(
[B(σ)]ω̇ + [Ḃ(σ, σ̇)]ω

)
(6)

ω̇ =
4

(1 + σ2)2
[B(σ)]T

(
σ̈ − 1

(1 + σ2)2
[Ḃ(σ, σ̇)][B(σ)]T σ̇

)
. (7)
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where:
[Ḃ(σ, σ̇)] = (−2σT σ̇)[I3×3] + 2[ ˙̃σ] + 2(σσ̇T + σ̇σT ). (8)

More details on MRPs and their properties are found in Reference 15.

Workspace discretization and constraint representation

As previously mentioned, the attitude workspace can be reduced to a unit sphere in MRP space,
centered at the origin, without loss of generality. For the present path-planning-based application,
the attitude workspace is sampled in order to provide waypoints for the algorithm to navigate from
the initial attitude to the target attitude. The sampling technique consists in discretizing the unit
sphere with a cartesian grid of equally spaced nodes in MRP space. The grid density N is defined
as the number of nodes contained along each principal cartesian semiaxis. Figure 1 shows a 2D
rendering of the cartesian grid. Such cartesian grid constitutes the skeleton of an undirected graph,
with the waypoints (nodes) in black, and the edges between two neighboring nodes drawn in gray.
In reality, the MRP grid/graph exists in a 3D space, and each ‘internal’ node is connected to up to
26 neighboring nodes. This does not apply to the nodes located on the σ = 1 boundary, which
are instead connected to the proper neighboring nodes, and also to the neighboring nodes of their
respective shadow set nodes. This enables the path-planning algorithm to switch to the opposite side
of the unit sphere when the σ = 1 boundary is encountered, thus performing MRP switching without
entering the σ > 1 domain. The paths in green and purple in Figure 1 represent, respectively, a
shortest-distance path that does not require MRP switching, and one that does.

1

-1

σ2

σ11

N = 6-1

Figure 1: 2D MRP grid with two shortest-distance paths: i) green: no MRP switching: ii) purple:
MRP switching13

Figure 1 shows the discretization of an attitude space where there are no rotational constraints.
However, this paper deals with attitude path planning in the presence of such constraints, therefore,
they must be accounted for in the graph. To this purpose, every node in the graph is checked for
constraint compliance. Defining Bb̂i the body-frame direction of the instrument and with N ŝ the
inertial direction of the celestial object, constraint compliance can be verified using the formula:

Bb̂i · [BN ]N ŝi Q cosβi (9)

4



x

1.0
0.5

0.0
0.5

1.0
y1.0 0.5 0.0 0.5 1.0

z

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(a) Keep-out cones in inertial space

1.0
0.5
0.0

0.5
1.0 1.0 0.5 0.0 0.5 1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(b) Obstacles in MRP space, N = 15

Figure 2: Three general keep-out constraints, β = 20 deg13

where the < sign is used for keep-out constraints, the ≥ for keep-in constraints, and [BN ] is the
direction cosine matrix that maps a vector from the frame N to the frame B, and it is obtained
as a function of the MRP set σ. The angle βi in Equation (9) is the field of view (FOV) of the
instrument. Figure 2 shows how a set of three keep-out constraints, in the presence of a sensi-
tive instrument mounted along the body axis Bb̂x map to the MRP space. Figure 1 (b) shows
the constraint-incompliant nodes, color-coded to match the respective constraints. Such nodes are
therefore removed from the graph and disregarded by the path-planning algorithm.

The most relevant features of the MRP discretization and obstacle representation have been high-
lighted in this section of the paper. For a more thorough description, the reader is referred to
Reference 13.

PATH SMOOTHING: THE LEAST SQUARES APPROXIMATING NURBS

Reference 13 showed how a sequence of constraint-compliant waypoints is not enough to provide
an accurate reference for the desired slew maneuver, because it gives no insight on the required
attitude, angular rate and angular acceleration as a function of time. Moreover, Reference 14 shows
that a full reference trajectory can be tracked accurately by a spacecraft equipped with a set of
reaction wheels, where the commanded torque obeys a Lyapunov-based feedback control law. The
same cannot be said when the reference is only provided in terms of a series of attitude waypoints,
in which case the tracking error between the reference and the actual attitude becomes significant.
On the other hand, Reference 14 highlighted how the reference trajectory obtained from NURBS
interpolation of the waypoints can require a global control cost that is suboptimal. This happens
partially due to the constraint imposed on the interpolating NURBS curve: being forced to meet all
the waypoints precisely, the interpolating curve presents wiggles between the waypoints that cause
cause parasitic torques to appear when not needed. This phenomenon becomes more significant as
the density of the waypoints increases, as it was initially highlighted in Reference 13.
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This section develops a new type of Least Squares (LS) approximating NURBS curve, for which
the condition of precise passage through the waypoints is not strictly enforced. The result is a curve
that has the same properties of the interpolating NURBS curve, but has a smoother look, as it uses
the waypoints as a baseline without being constrained to pass through them precisely.

Moreover, Reference 13 presents the requirement of obtaining a reference trajectory where the
angular rate norm ‖ω‖ remains constant during the slew maneuver, in order to ensure that none of
the limits on the individual angular rate components are violated.16 This section aims to explore
how to use the LS approximating NURBS not only to match the waypoints, but also to match a
desired angular rate profile during the maneuver. Achieving the required angular rate norm profile
by means of the NURBS curve only, instead of performing additional numerical manipulation as in
Reference 13, removes a step in the effort-based A* algorithm, ultimately improving its computa-
tional speed.

NURBS curves properties

A NURBS (Non-uniform Rational B-Spline) curve is a parametric, piecewise-polynomial func-
tion that is characterized by a high level of smoothness. The piecewise-polynomial nature makes
NURBS curves a good choice to fit large sets of data, because they do not suffer from the Runge’s
phenomenon, which arises when trying to fit the same large sets of data with one, high-order poly-
nomial.17, 18 The degree of a NURBS is chosen by the user, and it does not depend on the number of
data that needs to be fitted. Moreover, a NURBS curve of degree p is Cp−1 in its entire domain, that
is, continuous and differentiable p − 1 times. For the present application, the desire is to obtain a
NURBS curve that is at least C3, such that both the first and second order derivatives are continuous
and differentiable. This leads to a choice of a polynomial order p = 4. The general expression of a
NURBS curve is:

σ(u) =
n∑

i=0

Ni,p(u)Pi (10)

where u ∈ [0, 1] is the dimensionless parameter of the curve, Pi are the n + 1 control points, and
Ni,p(u) are the basis functions of polynomial order p that are linearly combined to obtain the final
piecewise-polynomial expression of σ(u). To define the basis function, it is necessary, first of all,
to define a knot vector U containing the m+ 1 scalar terms:

U = {0, ..., 0︸ ︷︷ ︸
p+1

, up+1, ..., um−p−1, 1, ..., 1︸ ︷︷ ︸
p+1

}. (11)

The p+1 knots equal to 0 and 1 at the beginning and end of the knot vector are required to ensure that
the curve passes exactly through the control pointsP0 andPn. The intermediate knots correspond to
the value of the parameter u, from now on defined as the dimensionless time, at which two different
polynomials segments of the curve are joined. The basis functions are defined using the De Boor
recursive formula:19

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u).

(12)
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The derivative of a NURBS curve is obtained as:

σ′(u) =
n∑

i=0

N ′i,p(u)Pi (13)

where σ′(u) =
dσ
du

denotes the derivative with respect to the dimensionless time u. The derivatives

of the basis functions Ni,p(u) are computed using the formula:17

N ′i,p(u) =
p

ui+p − ui
Ni,p−1(u)− p

ui+p+1 − ui+1
Ni+1,p−1(u). (14)

Improved time spacing

To build a NURBS curve, whether it is an interpolating curve or a LS approximating curve,
it is necessary to define the time tags ūk for k = 0, ..., q, which correspond to the values of the
dimensionless time u for which the curve passes through the k-th waypoint, with q + 1 being the
total number of waypoints. This is strictly true for an interpolating NURBS curve, where σ(ūk) =
σk, whereas for the LS approximating curve, this does not happen in general. In a generic case,
Reference 17 suggests to compute the ūk’s proportionally to a valid distance metric between two
consecutive waypoints, in the space where such waypoints exist. In this paper, such metric is defined
as:

θ̂(σ1,σ2) = min
{
θ(σ1,σ2), θ(σ1,σ

S
2 )
}

θ(σ1,σ2) = 4 arctan

[
(1− |σ2|2)σ1 − (1− |σ1|2)σ2 + 2σ1 × σ2

1 + |σ1|2 |σ2|2 + 2σ1 · σ2

]
(15)

which, effectively, consists in the principal rotation angle of a rotation from σ1 to σ2, assuming that
the shortest rotation is always performed.

A better sampling of the ūk’s time tags can be obtained when the desired properties of the NURBS
curve are incorporated into the appropriate formulation. In this implementation, one of the goals is
to obtain a reference trajectory with a constant angular rate norm. With respect to the final trajectory,
the total angular distance swept by the spacecraft in its rotational motion is given by:

S(t) =

∫ t

0
‖ω‖dτ. (16)

A second order Taylor series expansion of S(t) can be performed around the generic time instant
tk, giving: {

Sk+1 = Sk + Ṡk(tk+1 − tk) +
1

2
S̈k(tk+1 − tk)2

Ṡk+1 = Ṡk + S̈k(tk+1 − tk)
. (17)

where Sk = S(tk). Eliminating S̈k from Equation (17), yields the expression:

Sk+1 − Sk =
Ṡk + Ṡk+1

2
(tk+1 − tk). (18)

Now, according to the Fundamental Theorem of Calculus, it is Ṡk = ‖ω(tk)‖ = ωk. The differ-
ence Sk+1 − Sk can be approximated, assuming that the waypoints σk and σk+1 are close enough
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together, with Sk+1 − Sk ≈ θ̂(σk,σk+1). This gives the improved algorithm to calculate the time
spacing between the waypoints:

t0 = 0

tk+1 = tk + 2
θ̂(σk,σk+1)

ωk + ωk+1

(19)

from which the ūk’s can be obtaining normalizing the tk’s by tq, i.e., the time tag corresponding to
the final waypoint.

Least Squares waypoint approximation

This subsection outlines the procedure to obtain a LS approximating NURBS curve from a set of
q+ 1 attitude waypoints. As previously mentioned, the idea that motivated the use of a LS fit of the
waypoints, instead of a precise interpolation, is to reduce the dependence from the waypoints. The
waypoints provide guidance in the attitude space to avoid the keep-out zones, but other than that,
they are artificial constructs and, therefore, there is no real need to track them precisely.

The approach followed in this subsection only interpolates the first and last attitude waypoints σ0

and σq, since the initial and final attitudes are the only two pieces of information that the reference
trajectory must for sure comply with. Moreover, it is also desired to obtain a reference trajectory
that matches the required angular rates ant the beginning and at the end of the maneuver. This
translates into endpoint constraints also on the derivatives σ̇0 and σ̇q, which are computed from the
angular rates ω0 and ωq using Equation (3). As opposed to the interpolating NURBS, in the LS
approximation the number of control points Pi for i = 0, ..., n can arbitrarily be chosen by the user.

The first two control points, P0 and P1, and the last two, Pn−1 and Pn, are determined by
imposing the endpoint coordinates and derivatives mentioned above. This gives the linear, 4 × 4
system: 

N0,p(0) 0 0 0
N ′0,p(0) N ′1,p(0) 0 0

0 0 N ′n−1,p(1) N ′n,p(1)

0 0 0 Nn,p(1)



P0

P1

Pn−1

Pn

 =


σ0

σ′0
σ′q
σq

 . (20)

The remaining Pi for i = 2, ..., q− 2 are determined using a least squares approach. Before getting
into the actual least squares fit, the following quantities are defined:

ρk = σk −N0,p(ūk)P0 −N1,p(ūk)P1 −Nn−1,p(ūk)Pn−1 −Nn,p(ūk)Pn

for k = 1, ..., q − 1. (21)

The ρk terms are used to remove the dependance of the waypoints from the four control points that
have already been pre-computed. Defining with σk the waypoints to be fitted, and with σ(ūk) the
output of the NURBS curve according to Equation (10), it is possible to set up an error function that
is the sum of the quadratic errors, and only depends on the remaining Pi for i = 2, ..., n− 2:

f =

q−1∑
k=1

‖σk − σ(ūk)‖2 =

q−1∑
k=1

‖ρk −
n−2∑
i=2

Ni,p(ūk)Pi‖2. (22)
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To minimize for f , its derivative with respect to the control points is equated to zero:
df
dPl

=

0 for l = 2, ..., n− 2. This gives:

n−2∑
i=2

(
q−1∑
k=1

Nl,p(ūk)Ni,p(ūk)

)
Pi =

q−1∑
k=1

Nl,p(ūk)ρk for l = 2, ..., n− 2. (23)

For more details on this derivation the reader is referred to Reference 17. Defining N the (q− 1)×
(n− 3) matrix of scalars:

N =

 N2,p(ū1) . . . Nn−2,p(ū1)
...

. . .
...

N2,p(ūq−1) . . . Nn−2,p(ūq−1)

 (24)

it is possible to rewrite Equation (23) in the matrix form:

(
NTN

)
P = NTρ with P =

 P2
...

Pn−2

 and ρ =

 ρ1
...

ρq−1

 . (25)

Equation (25) represents three underdetermined systems, because the control points Pi and the
terms ρk are three-dimensional. The system can be solved choosing the minimum norm solution,
which yields the vector P for which the NURBS curve gives the Least Squares approximation of
the q − 1 intermediate waypoints:

P =
(
NTWN

)−1
WNTρ (26)

where W is a square, diagonal, positive semidefinite matrix of size (q − 1) containing the weights
associated with each waypoint. If W is the identity, all the waypoints are weighed equally. Equa-
tion (26) only works if the matrix NTWN is full rank. It is important to note that the elements
that compose the matrix N are strongly dependent from the knot vector U defined in Equation (11).
DeBoor showed that when every knot span in U contains at least one ūk, the matrixNTWN is pos-
itive definite and well-defined.20 The following algorithm for choosing the internal knots ensures
that this is true:17

d =
q + 1

n− p+ 1
i = int(jd) α = jd− i

up+j = (1− α)ūi−1 + αūi for j = 1, ..., n− p.
(27)

Figure 3 shows the performance of the LS approximating NURBS for a set of constraint-compliant
MRP waypoints, where an angular rate norm of ω∗ = 0.03 rad/s is required. The left plot shows
different LS solutions obtained for varying numbers of control points, for each MRP component
σj . It can be observed that for a smaller number of control points the approximation fits the way-
points less precisely. Conversely, as the number of control points is increased, the approximation
fits the waypoints almost perfectly. The right-hand-side plot shows the angular rate norm associated
with the LS approximating solutions, also displayed for different numbers of control points. It is
observed that, while the angular rate norm is on average close to the desired value, it still oscillates
noticeably. This is not surprising, since the required angular rate norm is not accounted for in this
LS approximation.
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Figure 3: LS approximating NURBS, attitude-based, for varying numbers of control points n

Least Squares waypoint and angular rates approximation

This subsection elaborates on the results of the previous one, enhancing the LS approximating
NURBS curve to match the requirement on the angular rate norm. Because Equation (25) is an
underdetermined system, it is possible to compute a minimum norm, LS solution that incorporates
in its error function not only the error with respect to the waypoints, but also to the desired angular
velocities at such waypoints. The requirement for the reference trajectory is to have a constant
angular rate norm ‖ω‖ = ω∗. While this requirement cannot be enforced at the trajectory endpoints,
it can be enforced in the intermediate waypoints.

Ideally, one should set up an error function for the MRP derivatives like:

g =

q−1∑
k=1

(
‖σ′k‖2 − ‖σ′(ūk)‖2

)2
=

q−1∑
k=1

‖σ′k‖2 − 3∑
j=1

(
n−2∑
i=2

N ′i,p(ūk)Pi,j

)2
2

. (28)

However, solving for the control points Pi that minimize the error function in Equation (28) is
nontrivial, because due to the quadratic dependence of the terms in square brackets from the Pi,
computing the solution would require nonlinear programming. A nonlinear program could be set
up and solved. However, the LS fitting NURBS is supposed to run fast, because it is performed
at every step of the effort-based A* algorithm,13 so, ideally, the solution sought should not feature
iterative methods that could significantly affect the computational time. Instead, an estimate of the
desired MRP derivatives σ′k is provided as follows. As a first step, such derivatives are computed
using central finite differences:

σ̂′k =
ūk+1 − ūk
ūk+1 − ūk−1

· σk − σk−1

ūk − ūk−1
+

ūk − ūk−1

ūk+1 − ūk−1
· σk+1 − σk

ūk+1 − ūk
for k = 1, ..., q − 1. (29)

From Equation (3) it is possible to derive the following relation between the angular rate norm and
the MRP derivative norm:

‖σ̇‖ =
1 + σ2

4
‖ω‖. (30)

Knowing the desired angular rate norm ω∗, it is possible to scale the estimated MRP derivatives
obtained via finite differences, to make them correspond to an angular rate vector with the desired
magnitude:

σ′k =
σ̂′k
‖σ̂′k‖

· 1 + ‖σk‖2

4
ω∗ · tq for k = 1, ..., q − 1 (31)
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where the multiplicative term tq appears since the derivatives are expressed with respect to the

dimensionless time: σ′ =
dσ
du

=
dσ
dt
· dt

du
= σ̇ · tq.

Having estimated the desired MRP rates, it is possible to proceed setting up a LS problem that is
analogous to that introduced in the previous subsection. Let’s define:

ρ′k = σ′k −N ′0,p(ūk)P0 −N ′1,p(ūk)P1 −N ′n−1,p(ūk)Pn−1 −N ′n,p(ūk)Pn

for k = 1, ..., q − 1 (32)

where the four control points are computed with the same procedure outlined in the previous sub-
section. It is possible to set up an error function that incorporates the squared errors with respect to
the MRP waypoints and associated MRP rates:

f =

q−1∑
k=1

(
‖σk − σ(ūk)‖2 + ‖σ′k − σ(ūk)′‖2

)
=

q−1∑
k=1

(
‖ρk −

n−2∑
i=2

Ni,p(ūk)Pi‖2 + ‖ρ′k −
n−2∑
i=2

N ′i,p(ūk)Pi‖2
)
.

(33)

Applying the same procedure to minimize f with respect to Pi gives the same minimum norm
solution as in Equation (26), only in this case the matrices that appear in the equation take the form:

N =



N2,p(ū1) . . . Nn−2,p(ū1)
...

. . .
...

N2,p(ūq−1) . . . Nn−2,p(ūq−1)
N ′2,p(ū1) . . . N ′n−2,p(ū1)

...
. . .

...
N ′2,p(ūq−1) . . . N ′n−2,p(ūq−1)


, P =

 P2
...

Pn−2

 , ρ =



ρ1
...

ρq−1

ρ′1
...

ρ′q−1


(34)

with N being a (2q− 2)× (n− 3) matrix and ρ being a (2q− 2) vector, while P remains a (n− 3)
vector. The weight matrix W has size (2q − 2)× (2q − 2) and it can be used to give more weight,
within the LS approximation, to the MRP waypoints or the MRP derivatives. It should be noted
that, according to this formulation, the angular rate ω is a function of both σ and σ̇: this means that
if the error on σ is large, the desired ω∗ will not be achieved even if the error on σ̇ is small. For this
reason, it is conceptually wrong to attribute a higher weight to the MRP derivative elements than
the MRP waypoints, since it is the latter that need to be approximated well enough for the rest of
the approximation to hold.

Figure 4 shows the LS solutions, for varying numbers of control points, obtained using the formu-
lation that accounts for waypoints and angular rates, with equal weight. In the left-hand-side plot,
the approximation yields curves that approximate the waypoints less tightly, compared to Figure 3,
but still recover the distribution of the waypoints faithfully. The lack of accuracy in tracking the
waypoints is due to the fact that the minimum norm solution is trying, in this case, to optimize not
only the waypoints, but also the angular rates. More interestingly, it can be observed from the right-
hand-side plot that the angular rate norm, in this case, is much closer to the desired target ω∗ = 0.03
rad/s, and the approximation is better for a higher number of control points.
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Figure 4: LS approximating NURBS, attitude- and angular rate-based, for varying numbers of
control points n

PERFORMANCE STUDY OF NURBS INTERPOLATION VS LS APPROXIMATION

Once the mathematical formulation for the LS approximating NURBS has been laid out, the next
step is to compare its performance to the interpolating NURBS. The motivation for using the LS ap-
proximating NURBS is to relax the dependence of the trajectory from the waypoints, which serve as
a guidance for the trajectory but are, ultimately, an ‘artificial’ constraint. Removing the constraint of
precisely hitting the waypoints would allow the trajectory to have a smoother profile, which would
ultimately lead to a smaller control effort. The interpolating NURBS, on the other hand, caused the
trajectory to wiggle between the waypoints, which caused some ‘parasitic’ torques to appear and
ultimately increase the required control effort. This section compares the performances of the two
NURBS curves in three different scenarios with different sets of constraints. Moreover, the com-
parison is performed, for each scenario, for a varying level of grid density N . The trajectories are
based, for each scenario, on the sequence of waypoints obtained applying a basic implementation of
the A* algorithm, using the metric presented in Equation (15). For the LS approximating NURBS,
n + 1 control control points are used, where n = q + 2, that is, one control point per waypoint
plus two control points to match the endpoint derivatives. This is the same number of control points
required by the interpolating NURBS. The computed trajectories are, therefore, not effort-optimal,
but this is not relevant for the comparisons that this sections aims to make. Lastly, the computational
cost of the two NURBS are also compared.

The following inertia tensor is used for the spacecraft, which is modeled after a 3-unit cubesat:

B[I] =

6.67 0 0
0 41.87 0
0 0 41.87

 · 10−3 kg ·m2. (35)

The control effort is estimated, like in,13 as the integral over the trajectory of the norm of the
instantaneous control torque:

U =

∫ T

0
‖L‖dt with L = B[I]Bω̇BN + BωBN × B[I]BωBN . (36)

All the scenarios presented in this section feature rest-to-rest maneuvers with an angular rate norm
ω∗ = 0.03 rad/s.
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Scenario 1: eigenaxis rotation

The first scenario is very simple, as it features an eigenaxis rotation about the Bb̂3 axis. Only one
sensitive instrument with a field of view of 20 deg is oriented along the Bb̂1 axis, and one keep-
out zone is present along the inertial direction N ŝ = [−1, 0, 0]. The initial and final attitude are,
respectively, σ0 = [0, 0, 0.1] and σq = [0, 0,−0.75]. Figure 5 shows the trajectory of the sensitive
boresight in inertial space, projected onto a 2D plane. All the trajectories obtained for different grid
densitiesN overlap along the same projection on the 2D plot. More interesting are the results shown
in Figure 6, which also shows that the trajectories match. This happens because of the simple nature
of the eigenaxis rotation, for which all the guidance waypoints lie along the σ3 axis. For all values
of N the angular rate norm is approximated very well, as it stays very close to the target value.
Figure 7 shows the comparison between the two types of NURBS: as far as control effor, the LS
approximating curve performs better across all grid densities, yielding in some cases a significant
reduction. The computational cost of the LS approximating curve is, on the other hand, higher.
Despite that, it scales comparably to the interpolating curve as the grid density (and therefore the
number of waypoints q) increases.
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Figure 5: Boresight plot, scenario 1
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Figure 6: Attitude σ and angular rate ‖ω‖ for varying grid densities N ; scenario 1
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Figure 7: Control effort and computational time of interpolating NURBS vs LS approximating
NURBS, for varying grid densities N ; scenario 1

Scenario 2: multiple keep-out zones

The second scenario is based off of the previous one, with the addition of two more keep-out
zones along the inertial directions N ŝ2 = [0,−0.981,−0.196] and N ŝ3 = [0.958, 0, 0.287]. Fig-
ure 8 shows the trajectories of the sensitive instrument in inertial space, as it steers away from the
keep-out zones. In this case, different trajectories are obtained for different grid densities N : this
happens because, for different N , the attitude space is sampled with different nodes, and therefore
the baseline path computed by A* consists of different waypoints for each case. Regardless, the
different trajectories remain fairly close to one another, although for high grid densities some brief
constraint violations occur. Figure 9 shows that, even in this case, the angular rate is approximated
quite well, although the plateau around ω∗ = 0.03 rad/s is not as flat as for the previous scenario.
This happens because, for scenario 1, all the baseline waypoints are aligned along a straight line,
for which the approximations made in Equations (19) and (31) are much more accurate. Is can also
be observed that, for higher N , the angular rate norm is less oscillatory, thanks to a higher number
of waypoints that provide more guidance for the output trajectory. Lastly, Figure 10 compares the
performances of the two NURBS curves. In this scenario, the interpolating NURBS is associated
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Figure 8: Boresights plot, scenario 2
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Figure 9: Attitude σ and angular rate ‖ω‖ for varying grid densities N ; scenario 2
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Figure 10: Control effort and computational time of interpolating NURBS vs LS approximating
NURBS, for varying grid densities N ; scenario 2

with a control effort that is almost twice as high as the LS approximating NURBS. Moreover, the
control effort for the first one has increased significantly with respect to scenario 1, whereas for
the second, the control effort remains closer to the values computed for the first scenario. For the
computational cost, the same considerations can be made: the LS approximating NURBS is con-
sistently more costly, but comparable to the interpolating NURBS, and they display a similar trend
with increasing levels of grid density.

Scenario 3: mixed keep-in and keep-out zones

The third scenario is the most articulated, as it features multiple instruments. There is still a
sensitive camera aligned along the Bb̂1 axis, and two sun sensors, along the b̂2 and b̂3 axes respec-
tively, each with a field of view of 70 deg. The only celestial object is the Sun, located along the
N ŝ3 = [1, 0, 0] inertial direction. The constraints for this problem consist of maneuvering such
that the Sun remains out of the field of view of the camera, but within the field of view of at least
one of the sun sensors. The initial and final attitude are, respectively, σ0 = [0,−0.25,−0.25] and
σq = [0.4, 0.4, 0.3]. Figure 11 shows the trajectories of the three boresights in inertial space: all
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Figure 11: Boresights plot, scenario 3
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Figure 12: Attitude σ and angular rate ‖ω‖ for varying grid densities N ; scenario 3
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Figure 13: Control effort and computational time of interpolating NURBS vs LS approximating
NURBS, for varying grid densities N ; scenario 3

three are compliant, in al their parts, for all grid densities N . The sun sensors switch, since at the
initial attitude only sun sensor 1 sees the Sun, while sun sensor 2 sees the Sun once the final pose is
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reached. Similar considerations apply for Figure 12 as to the previous scenario: the target angular
rate norm is approximated fairly well, and the more so when the grid density is higher. Relative to
Figure 13, the control effort displays an irregular behavior for both NURBS as N varies, but again
the LS approximation outperforms the interpolation for each grid density. Regarding computational
time, the same considerations apply as in the previous two scenarios.

PERFORMANCE STUDY OF EFFORT-BASED GRAPH SEARCH ALGORITHM

This last section shows the results computed using the effort-based A* graph-search algorithm,
outlined in Reference 13. As this version of the A* algorithm searches the graph, it uses interme-
diate paths consisting of the previously explored nodes (σ0, ...,σn−1), the current open node (σn)
and the goal node (σq) as a baseline for an intermediate trajectory computed via NURBS curves.
The control effort integral in Equation (36), evaluated along these intermediate trajectories, is used
as the the priority function p(n) to explore the graph, with the objective of finding the sequence
of waypoints that yields the optimal trajectory in terms of required control effort. Such priority
function is the sum of two terms, the cost to current node g(n) and the heuristic h(n). The cost
to current node is associated to the control effort required to track the trajectory from the starting
node σ0 to the current open node σn; the heuristic is an estimate of the cost required to track the
trajectory from the current open node to the goal node σq. This heuristic is computed assuming that
the goal node can be reached from the open node n through a straight path in MRP space, without
obstacles. This is to ensure that the heuristic is optimistic,10 i.e., the cost of the final path to goal is
higher or equal to the priority function p(n). This gives:

p(n) = g(n) + h(n) =

∫ tn

0
‖L‖dt+

∫ tq

tn

‖L‖dt =

∫ tq

0
‖L‖dt. (37)

The effort-based A* is run for the three scenarios presented in the previous sections, for both the
interpolating NURBS and the LS approximating NURBS.

Figure 14 shows that the control effort of the effort-optimal solutions, for both types of NURBS,
match the results shown in Figure 7. This is expected, because for the eigenaxis rotation in scenario
1, the control strategy defaults to a bang-bang type with an effortless coasting arc in the middle.
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Figure 14: Control effort and computational time of effort-based A*, NURBS comparison; scenario
1
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Figure 15: Control effort and computational time of effort-based A*, NURBS comparison; scenario
2
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Figure 16: Control effort and computational time of effort-based A*, NURBS comparison; scenario
3

Any other trajectory that deviates from that would likely be more costly in terms of control effort,
due to the insurgence of gyroscopic terms and torque components along the other two axes.

Figures 15 and 16 show that the effort-based solutions, for both NURBS curves, provide better
trajectory in terms of control effort than those in the previous section, as expected. While the
results improve for both types of NURBS, the LS approximating curve consistently outperforms the
interpolating curve, always yielding less costly solutions.

The effort-based A* algorithm, whose performance is described in Figures 14 to 16, is imple-
mented in Python and run on a Macbook Pro with an M1 Pro chip. These plots show how compu-
tationally demanding the effort-based algorithm is, where for high grid densities it can take up to
15-20 minutes to compute the optimal solution. However, an implementation of the same algorithm
in C++ could significantly reduce the computational time from the order of minutes to the order of
seconds. Interestingly, Figures 15 and 16 show that the computational times for the two different
NURBS are comparable. This is not intuitive, if looking at the results shown in Figures 6, 9 and 12
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where, when the path is pre-computed by a metric-based version of A*, the LS approximating
NURBS seems to consistently require a larger computational time than the interpolating NURBS.
In the effort-based implementation, however, the priority function p(n) computed from the LS ap-
proximating NURBS likely produces a more ”optimistic” estimate of the total path cost. This allows
the effort-based algorithm combined with the LS approach to converge to the final solution more
efficiently,10 i.e., exploring a smaller number of nodes.

This benchmark analysis also showed, as it was expected, that increasing the grid density N
yields longer computational times for the effort-based A*. However, in the range 10 ≤ N ≤ 15,
such increase is still quite acceptable. The grid density N is, in this problem, a tradeoff parameter:
increasing N gives a better representation of the attitude space and less of a chance of violating
the constraints. On the other hand, the computational time increases significantly and the computer
trajectories, even the effort-optimal ones, are more costly in terms of control torque.

CONCLUSIONS

This paper proposes a new solution to the constrained attitude maneuvering problem using a
newly designed type of NURBS curve. The new curve matches the endpoint constraints of initial
and final attitude and angular rates, while it uses MRP guidance waypoints as a baseline. The
difference between the trajectory and the waypoints, and the velocity along the trajectory and the
desired angular rates, are minimized via a least-squares minimization technique. This paper shows
how the Least Squares approximating NURBS consistently outperforms the interpolating NURBS
in terms of required control torque, for all sequences of constraint-compliant waypoints used as
baselines. The LS approximating NURBS, in a single run, requires a slightly longer computational
time, due to the larger number of calculations it needs to perform. However, within the effort-
optimal A* graph-search algorithm, which runs multiple NURBS calculations in sequence, the two
NURBS approaches are comparable in terms of computational time. This paper also shows how the
grid density N affects the computational time of the algorithm and the ultimate path cost associated
with the computed trajectories, allowing to identify the range N ∈ [10, 15] as a good tradeoff
between attitude sampling accuracy and computational tractability.
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