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SPACECRAFT FORMATION AND ORBIT CONTROL USING
ATTITUDE-DEPENDENT SOLAR RADIATION PRESSURE

Ethan R. Burnett∗ and Hanspeter Schaub†

This paper introduces a model for spacecraft formation dynamics subject to attitude-
dependent solar radiation pressure (SRP) disturbance, with the SRP model ac-
counting for both absorption and specular/diffuse reflection. Spacecraft attitude
is represented in Modified Rodriguez Parameters (MRPs), which have desirable
properties over other attitude parameterizations. The model is derived and tested,
then control examples are shown for hypothetical spacecraft with generally real-
istic optical parameters. This approach has applications to both formation control
and to orbit maintenance. The results demonstrate the feasibility of SRP-based
formation and rendezvous control in orbits around small bodies and in high orbits
around the Earth such as the GEO belt.

INTRODUCTION

Solar radiation pressure (SRP) is the driving force for solar sails, but it is typically viewed as a
disturbance force and not a control parameter for typical modern spacecraft. However, in environ-
ments where differential solar radiation pressure is sufficiently strong on the scale of the relative
motion dynamics, small sustained variations in attitude can be used to harness this perturbation
for control – even for spacecraft with realistic optical parameters. While not particularly suitable
in low-Earth orbits, the efficacy of this control method becomes much greater for multi-spacecraft
formations sufficiently far from the planet. In this region, the spacecraft are not subject to strong
disturbances from higher-order gravitational effects or drag due to the rarefied atmosphere. SRP-
based control also becomes a feasible option for formations in orbit around small bodies such as
asteroids, comets, and moons.

The possibility of using small attitude changes for formation-keeping is appealing because of the
potential for saved thruster fuel. It is also valuable because the differential SRP force between iden-
tical spacecraft can achieve the incredibly small values necessary for real-time and high-precision
formation-keeping around small asteroids and comets. Even the smallest commercially available
ion thrusters are often too powerful for continuous use in station-keeping in these environments, re-
quiring them to be used in a pulsed control strategy almost like chemical thrusters. This contradicts
the nature of their design for very long-duration burns, reducing efficiency and accelerating wear.
Other design solutions are available to partially mitigate this issue, such as pulsed plasma thrusters
(PPTs), but these are nowhere near as efficient as other forms of electric propulsion. In this context,
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SRP-based control would be preferred over any type of electric propulsion, and can be implemented
on spacecraft with traditional geometry and surface materials.

The topic of natural SRP-perturbed orbital dynamics has been frequently studied, especially in
the vicinity of small bodies.1 Many works use a cannonball SRP model, and focus on finding
stable orbits while assuming the force variation with attitude is not significant.2, 3 Some works
also discuss orbit-attitude coupling in the uncontrolled dynamics, or the coupled effects of multiple
perturbations.4–6 Recent work by Kenshiro Oguri and Jay McMahon focuses on SRP-based orbit
control around asteroids.7 The optical force SRP model used in their work is essentially equivalent
to the one used here, but their approach is otherwise quite different. Their work studies orbit control
via a chosen subset of the orbit elements, namely semimajor axis and inclination. The optimal
attitude for control is parameterized by two angles, whose values are obtained numerically based on
the current system state. The paper makes multiple novel analytical arguments that provide intuition
about the controlled orbital dynamics – including attitude constraints to prevent orbital escape, and
even an analytic upper bound for the time of flight for landing on an asteroid using SRP-based
control.

It is worth noting that SRP-based control has also been extensively studied for solar sails, but this
work usually makes restrictive assumptions about the spacecraft optical properties. While interest-
ing work has been done to study the natural and controlled orbital dynamics using the SRP force,
this paper is focused on the topic of orbital formation control, for which spacecraft with unremark-
able geometry can still produce sufficient differences in SRP force to use it as a relative position and
velocity control parameter.

A desirable approach for formation control would be to use a model that requires only occasional
updates of the formation state differences and the spacecraft orbital elements of one or more of the
spacecraft. These state differences could be provided directly from measurements in local-vertical
local-horizontal (LVLH) components. The option to perform most control computations in advance
would also be desirable. Ideally, a model accounting for the evolution of the perturbed orbit and the
linearized SRP-perturbed differential dynamics will naturally enable sufficiently reliable situational
awareness even with low navigation update frequency. Lastly, a linearized approach leverages the
smallness of the formation geometry on the scale of the spacecraft orbits. It is also amenable to a
linearly optimal LQR control approach – in which the optimal gain schedule can be computed in
advance of the maneuver, or in a receding-horizon manner.

The notion of using SRP for spacecraft control is not new. Several highly successful missions
have used the attitude variations in SRP force to enhance the capability of a spacecraft otherwise not
explicitly designed to harness the disturbance. The K2 mission was able to make use of SRP effects
to extend the life of the Kepler space telescope mission, which was suffering from attitude control
under-actuation due to reaction wheel failure. This was done by achieving and maintaining an
orientation to passively minimize the SRP disturbance along the roll axis.8 The Messenger mission
to Mercury used SRP for precision orbit control, which is particularly notable and relevant to this
work. In that mission, pre-planned attitude and solar array articulations were used to improve the
accuracy of Mercury flybys.9 This was done in an open-loop fashion, but closed-loop control would
be desirable. Closed-loop control should be readily achievable using SRP models with varying
levels of fidelity.

This paper focuses on developing an accurate linearized time-varying (LTV) model of formation
dynamics subject to attitude-dependent SRP forces. The model uses the chief-deputy notation com-
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monly used in spacecraft formation flying, in which the motion of one spacecraft (the deputy) is
described with respect to another (the chief), in a local chief-centered frame. The model may be
updated with chief orbit elements with any desired frequency. The analytical approach in this paper
naturally allows for the evolution of the spacecraft orbit elements to be approximated for relatively
long timespans. This model can easily be combined with components of other models to account
for additional system perturbations.10 While it is assumed that updated relative heading, range, and
range-rate data is periodically available for the spacecraft in the formation, the relative position and
velocity can be efficiently integrated between measurements using the linearized model. By incor-
porating accurate and computationally efficient approximation of system evolution into the model,
significant decoupling of the tasks of control and navigation is achievable. Overall, the develop-
ments in this paper are a step towards enabling a highly flexible, simple formation control strategy
suitable for closed-loop SRP-based spacecraft formation control.

After the linearized model is developed, a linearly optimal control strategy is designed for small
attitude departures from a reference orientation. For simplicity in developing the proof-of-concept
simulations, the model is implemented with a single facet only, but the approach can be easily
generalized to a multi-facet spacecraft model. The model developed in this paper could be adapted
and extended to find use in future multi-spacecraft missions to asteroids and comets, and will also
be useful for formation control or orbit maintenance in high-altitude orbits about the Earth, such as
the GEO belt.

SPACECRAFT FORMATION DYNAMICS WITH SOLAR RADIATION PRESSURE

The force due to solar radiation pressure on a body surface element Ai is given below:11

FSi = −P (R)Hi(û)Ai

[(
ρisi

(
2n̂n̂− I

)
+ I

)
· û (û · n̂i) + a2in̂i (n̂i · û)

]
(1)

with
P (R) ≈ G1

R2
(2)

a2i = B(1− si)ρi + (1− ρi)B (3)

The function P (R) is the solar radiation pressure at distance R, and G1 is the solar radiation force
constant at 1 AU. The specular and diffuse reflectivity coefficients are si and ρi, and B is the
Lambertian scattering coefficient, û is the unit vector to the sun, and H(û) is a visibility delta
function, equal to 1 or 0, depending on whether or not the face is directly illuminated by sunlight.

For simplicity and generality, this analysis neglects the effects of secondary reflections from other
surfaces. However, a realistic treatment of the body optical properties (B, si, ρi) is important.

The SRP force can be modeled by considering the sum of the forces on all illuminated facets.
The results in this paper use a single-facet model of a spacecraft. However, it is emphasized that
this method can be directly generalized to a spacecraft with fixed geometry and multiple illuminated
facets. Summing over the contributions of all body area elements, an approximate model of the net
SRP force vector on the spacecraft is obtained:

FS = −P (R)A
((
a2 cosβ + 2ρs cos2 β

)
n̂+ (1− ρs) cosβû

)
(4)

where cosβ = û · n̂, A is a projected area term, and n̂ is the corresponding equivalent normal unit
vector. The terms a2, ρ, and s are illuminated body-averaged optical parameters. This replaces the
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multi-facet SRP force model with a single-plate SRP force model at some reference orientation. It is
always possible to obtain an equivalent single-plate model representation of the resultant SRP force
acting on a spacecraft, for which the sum of the n̂i components of the resultant SRP force acts along
n̂, and the total û component is also reproduced. However, the extent to which attitude-dependent
SRP force variations of the single plate correctly model the true spacecraft SRP force variations is
situation dependent. Accuracy would be highly dependent on spacecraft geometry and the optical
properties of the surface facets.

Figure 1. Simple Spacecraft Representation

While the single-plate representation used in this paper will be extended for multi-facet spacecraft
models in future work, a short analysis demonstrates that the assumptions in this paper are reason-
able for a proof-of-concept. Figure 1 is a simplified representation of averaging over the illuminated
spacecraft area to create a single-plate approximation. This figure is used to provide perspective on
the accuracy of such a procedure by examining the error in the resultant normal vector n̂ of the
single-plate approximation.

The spacecraft body is a rectangular prism of dimensions l × L ×W . The unit vector û points
toward the sun, and the unit vector ô is orthogonal to û. For analytical simplicity body is oriented
such that only two faces are illuminated, so n̂i · û > 0 only for i = 1, 2. If the optical properties of
the two illuminated facets are similar, the single-plate model will have a resultant normal vector n̂
given below:

n̂ =

∑
i n̂iAi (n̂i · û)

‖
∑

i n̂iAi (n̂i · û)‖
=
n̂1l sinα+ n̂2L cosα√
L2 cos2 α+ l2 sin2 α

=
1√

L2c2α+ l2s2α

(
(l − L) sinα cosα
L cos2 α+ l sin2 α

)
(5)

where the final expression is resolved into components n(1) and n(2) along ô and û, respectively.
For a counterclockwise rotation through a small additional angle δ, the resultant normal vector n̂′

will still be given by Eq. (5), but with rotation angle α′ = α + δ and unit vectors n̂′1 and n̂′2
appropriately rotated counterclockwise by δ from their reference orientation depicted in Figure 1.
On the other hand, the rotation by δ of the normal vector of the single plate representation is given
below:

n̂′ ≈
(
n(1) cos δ − n(2) sin δ

n(1) sin δ + n(2) cos δ

)
(6)
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The difference between this approximate result and the actual result provides a simplified single
measure how well the single-plate representation works. The accuracy is a function of reference
offset angle α and the area of the two illuminated rectangular facets LW and lW . Note that there
is no W dependency appearing for this example due to the orientation. For small angles δ, the error
in the normal vector can be shown to be:

en̂ ≈
1

(L2c2α+ l2s2α)3/2

(
−1

2L (L+ l + (L− l) cos 2α)
L(L− l) sinα cosα

)
lδ (7)

For a sun-facing reference orientation α� 1, this yields the intuitive result of non-negligible error
only in the ô direction:

en̂ ≈ −
l

L
δô (8)

This is an important result. As expected, the error in Eq. (7) also approaches zero as l/L → 0.
The single-plate representation becomes more accurate as the body becomes more plate-like, but
it also can retain reasonable accuracy for l/L 6= 0 for near sun-facing reference orientations with
α � 1. For example, in the case of the small-angle restrictions of Eq. (8), for a 6U CubeSat with
l/L = 1/3, the error is en̂ ≈ 0.0058ô per degree of δ.

Similar analysis with the projected area and optical parameters can be carried out. This analysis
could also be done in 3D with three facets, but the results are needlessly complex for this discussion.
Future work will extend the methods in this paper to develop a control model that explicitly accounts
for the SRP force on spacecraft with multiple illuminated facets, so no further discussion of single-
plate approximations is needed.

Other approaches of modeling SRP acceleration variation for small angles are possible, such as
a local linearization of the spherical harmonic series representation.12 The purpose of this work
is to demonstrate the feasibility of using attitude-dependent SRP acceleration for formation and
rendezvous control, so studies of the control implications of SRP model fidelity are left for future
work.

Problem Geometry and Coordinate Frames

Before continuing with the derivation of the linearized dynamics and control model, the primary
coordinate frames must be defined. First, the primary body Hill frameHP is defined by orthonormal
vectors

{
û, Ĥ × û, Ĥ

}
, where û points from the planet toward the sun and Ĥ = hp/hp is defined

by the planet’s orbit angular momentum vector hp, normal to its orbit plane.

One can describe the rotation from the primary-centered Hill frame to the primary-centered iner-
tial (N) frame through two angles:

[NHP ] = [R1(κ)] [R3(ϕ+ π)]> =

 − cosϕ sinϕ 0
− sinϕ cosκ − cosϕ cosκ sinκ
sinϕ sinκ cosϕ sinκ cosκ

 (9)

where κ is the obliquity of the ecliptic plane and ϕ is the argument of latitude, or the rotation angle
(in the orbit plane) from the Vernal Equinox to the radial vector from the sun to the planet. For
Earth, κ ≈ 23.5◦, and the N frame would be the typical Earth-centered inertial (ECI) frame.

Since this paper is focused on using SRP force for rendezvous and formation control, the con-
trolled relative motion of two or more spacecraft is considered. The spacecraft labeling deputy and
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chief is commonly used in formation flying literature. The motions of one or more deputies relative
to the chief are used to describe formation or rendezvous geometry without explicitly considering
all individual spacecraft orbits. Note that one may arbitrarily decide which spacecraft is designated
as the chief and which is the deputy. In this paper, the chosen representation for the relative state is
to resolve the relative position

∆r = [x, y, z]> (10)

and velocity
∆r′ = [ẋ, ẏ, ż]> (11)

in the chief-centered rotating local-vertical, local-horizontal (LVLH) frame. Here, ( )′ denotes the
derivative of a state quantity as seen in the LVLH frame. This frame rotates with the spacecraft orbit
and is defined by orthonormal radial, along-track, and orbit-normal vectors {êr, êt, ên}. The radial
and normal unit vectors are defined in the usual way, in terms of the chief spacecraft position r and
velocity v: êr = r/r and ên = r × v/‖r × v‖.

Now a final rotation from the inertial frame to an orbiting spacecraft-centered local-vertical local-
horizontal (LVLH frame) may be defined. The rotation [HSN ] is given below in terms of the chief
spacecraft orbit radial and angular momentum vectors r andh, and equivalently in a 3–1–3 sequence
in terms of the spacecraft orbit elements Ω, i, and θ:13

[HSN ] =

 r̂>

1
rh

(
r2v − (v · r) r

)>
ĥ>

 (12)

[HSN ] =

 cos Ω cos θ − sin Ω sin θ cos i sin Ω cos θ + cos Ω sin θ cos i sin θ sin i
− cos Ω sin θ − sin Ω cos θ cos i − sin Ω sin θ + cos Ω cos θ cos i cos θ sin i

sin Ω sin i − cos Ω sin i cos i


(13)

Thus, the rotation from HP to HS is:

[HSHP ] = [HSN ] [NHP ] (14)

With the system geometry and coordinate descriptions now defined, a control matrix [B] can
now be obtained, which maps deputy spacecraft attitude to accelerations in the LVLH frame. The
uncontrolled dynamics of an SRP-perturbed multi-spacecraft formation are also considered to obtain
the system matrix [A]. This complex derivation follows the control matrix derivation.

Linearized Attitude-based SRP Control

Modified Rodrigues Parameters (MRPs) are used to describe the spacecraft attitude, or the attitude
of a single-plate model in this paper. These are a newer attitude description that are expressed in
terms of the principal rotation elements (angle α and axis ê):13

σ = tan
α

4
ê (15)

The MRP attitude representation has the benefit of linearizing as σ ≈ (α/4) ê, providing a larger
usable range for linear control than an angular representation.
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The mapping to and from a general rotation matrix [C] is given below:

[C] = [I3×3] +
8[σ̃]2 − 4(1− σ2)[σ̃]

(1 + σ2)2
(16)

σ =

σ1σ2
σ3

 =
1

ζ (ζ + 2)

C23 − C32

C31 − C13

C12 − C21

 (17)

where ζ =
√
C11 + C22 + C33 − 1, σ2n =

(
σ>σ

)n, and [σ̃] is the MRP skew-symmetric matrix.

To use the MRP formulation, the rotation of a vector in HP components into the spacecraft
body frame (BS) components is defined in terms of two successive rotations. The first is a rotation
[C1(σr)] to the “reference” attitude, and the second is a rotation [C2(σc)] to the current orientation,
which is a controlled deviation from this reference attitude:

BSr = [C2(σc)][C1(σr)]
HP r (18)

The attitude deviationσc is the control parameter for attitude-based position control using SRP. This
work assumes that the spacecraft attitude control system is fully capable of enforcing the needed
attitude behavior.

From equation 4, substituting n̂ · û for all cosα terms, the force due to SRP is rewritten below in
itsHP components using HP n̂ = [C1(σr)]

>[C2(σc)]
>BS n̂ and defining BS n̂ = ê1 and HP û = ê1,

where ê1 = [1, 0, 0]>:

FS = −P (R)A
((
a2 (n̂ · û) + 2ρs (n̂ · û)2

)
[C1(σr)]

>[C2(σc)]
> + (1− ρs) (n̂ · û) [I3×3]

)
ê1

(19)
To obtain the [B] matrix, this equation must be linearized with respect to the control term u = σc.
First, all control-associated parts are replaced with their expansions up to O(σc):

[C2(σc)] ≈ [I3×3]− 4[σ̃c] (20)

n̂ · û = ê>1 [C2(σc)][C1(σr)]ê1 ≈ ê>1 ([C1(σr)]− 4[σ̃c][C1(σr)]ê1) (21)

(n̂ · û)2 ≈
(
ê>1 [C1(σr)]

>ê1

)
ê>1 ([C1(σr)]− 8[σ̃c][C1(σr)]ê1) (22)

Substituting Eqs. (20) – (22) into Eq. (19), expanding, and retaining only terms up to O(σc), the
linearization of FS is obtained:

FS ≈− P (R)A

{(
a2 + 2ρsê>1 [C1(σr)]ê1

)(
ê>1 [C1(σr)]ê1

(
[C1(σr)]

> ([I3×3 + 4[σ̃c])
))

− 4
(
a2 + 4ρsê>1 [C1(σr)]ê1

)
ê>1 [σ̃c][C1(σr)]ê1[C1(σr)]

>

+ (1− ρs) ê>1 ([I3×3]− 4[σ̃c]) ê1[I3×3]

}
ê1

(23)
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This equation is linear in σc, and is rearranged below so that the control vector σc is explicitly
isolated:

FS =− P (R)A

{(
a2 + 2ρsC1(1,1)

) (
C1(1,1)[C1(σr)]

>
)
ê1

− 4
(
a2 + 2ρsC1(1,1)

) (
C1(1,1)[C1(σr)]

>[ẽ1]
)
σc

− 4
(
a2 + 4ρsC1(1,1)

) (
[C1(σr)]

>[ê1ê
>
1 ][C1(σr)]

>[ẽ1]
)
σc

+ (1− ρs)ê1 + 4(1− ρs)[ê1ê>1 ][ẽ1]σc

}
(24)

where the shorthand notation C1(1,1) = ê>1 [C1(σr)]ê1 is used. If the reference orientation is sun-
facing, then [C1(σr)] = [I3×3] and a simpler form is obtained:

FS = −P (R)A {(1 + ρs+ a2)ê1 − 4(a2 + 2ρs)[ẽ1]σc} (25)

From this result, the [B] matrix can be isolated for the system resolved in HP :

[B] = 4
P (R)A

m

 04×3
0 0 −a2 − 2ρs
0 a2 + 2ρs 0

 (26)

The [B] matrix for a more general reference orientation can be readily obtained by isolating the
control-associated terms in Eq. (24). This can also be easily resolved in any desired frame by
using the appropriate rotation matrices. Note that in the case of linearization about a sun-facing
reference, the [B] matrix for the system resolved in HP predicts zero acceleration will be produced
along the û direction due to small controlled attitude variations. In reality, a small acceleration will
be produced, but this is not captured by the linearization. This suggests that motion along the û
direction is instantaneously uncontrollable with linear control. However, investigations later in the
paper show that the system is still fully controllable.

Linearized Relative Motion Dynamics under SRP

The SRP-perturbed uncontrolled relative orbital motion behavior of the spacecraft is now derived.
Because the SRP-based control is enabled by deviations from a reference attitude that is assumed
to be fixed in the HP frame, this analysis assumes that the SRP-based differential acceleration
between the deputy and chief spacecraft is negligible. This implicitly assumes that the deputy and
chief geometry and optical characteristics are similar. In this case, with both spacecraft at the same
reference orientation, the only manifestation of the SRP acceleration is on the kinematics of the chief
LVLH frame. Note that depending on the dynamic environment, this effect may be overshadowed
by other disturbance accelerations.

The angular velocity of the perturbed LVLH frame may be described in terms of the perturbed
orbit element rates:14

ωH =
dΩ

dt
K̂ +

di
dt

K̂ × ên
‖K̂ × ên‖

+
dθ
dt
ên (27)

The orbit element rates are obtained using the variational equations in their Gaussian form to yield
the osculating rates due to the SRP perturbation, resolved in local radial, along-track, and cross-track
components:

aSRP = RSRPêr + TSRPêt +NSRPên (28)
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dΩ

dt
=
r sin θ

h sin i
NSRP (29a)

di
dt

=
rcosθ

h
NSRP (29b)

dθ
dt

=
dω
dt

+
df
dt

=
h

r2
− r sin θ cos i

h sin i
NSRP (29c)

The argument of latitude is used to avoid the possibility of small denominators in the variational
equations for near-circular orbits. The argument of latitude rate has two components: the “unper-
turbed” argument of latitude rate θ̇u = h/r2, and a component due to the regression of the node
from which θ is measured.15 The expression for NSRP may be obtained using the rotation from HP

to HS , and the SRP disturbance force resolved in HP components:

NSRP =
1

m
ê>3 [HSN ] [NHP ]FS (30)

NSRP =− P (R)
A

m

(
(1− ρs)
C1(1,1)

+ a2 + 2ρsC1(1,1)

)
C1(1,1)

(
ê>3 [HSN ] [NHP ] [C1(σr)]

>ê1

)
(31)

NSRP =− P (R)
A

m

(
(1− ρs)
C1(1,1)

+ a2 + 2ρsC1(1,1)

)
C1(1,1)

(
ê>ξ [C1(σr)]

>ê1

)
(32)

where the unit vector êξ is not a function of θ due to the problem geometry:

êξ =

sinκ sinϕ cos i− sin Ω cosϕ sin i+ cos Ω cosκ sinϕ sin i
sinκ cosϕ cos i+ sin Ω sinϕ sin i+ cos Ω cosκ cosϕ sin i

cosκ cos i− cos Ω sinκ sin i

 (33)

Assuming the primary body orbit radius R is nearly constant and that the reference orientation is
stationary as seen in the HP frame, the only time-varying term in Eq. (32) is the primary body’s
argument of latitude, ϕ. Generally, this time scale will be much slower than the spacecraft orbit
period about the primary body.

By applying the transport theorem twice with angular velocity given by Eq. (27), the kinematics
of the perturbed LVLH frame are given in radial, along-track, and cross-track components:

∆r̈ =
(
ẍ− ω̇ny − 2ωnẏ − ω2

nx+ ωnωrz
)
êr

+
(
ÿ + ω̇nx+ 2ωnẋ−

(
ω2
n + ω2

r

)
y − ω̇rz − 2ωrż

)
êt

+
(
z̈ + ωnωrx+ ω̇ry + 2ωrẏ − ω2

rz
)
ên

(34)

where the angular velocity has also been resolved into its LVLH components:

ωr = Ω̇
sin i

sin θ
(35a)

ωt = 0 (35b)

ωn = θ̇u = h/r2 (35c)

The term ∆r̈ represents the differential perturbing accelerations. If only the SRP differential accel-
eration is considered, then, in the case of the earlier listed assumptions, this term is due only to the

9



differential gravity, which is assumed to be a two-body potential for now:

∆r̈J0 =
µ

r3

2x
−y
−z

 (36)

The choice of local Cartesian/curvilinear coordinates for treatment of the perturbed relative mo-
tion problem has led to one important limitation: large chief orbit eccentricities introduce significant
analytical difficulties to the derivation, for multiple reasons. While such problems are still analyt-
ically tractable, this derivation is restricted to cases of e ≈ 0 (near-circular orbits) and ȧ ≈ 0
(negligible changes to orbit specific energy). This dynamical model can theoretically be adapted
for perturbed eccentric orbits, assuming ė ≈ 0 still holds, and that all ρ terms are updated to ac-
count for the variations in the chief radius. Note that writing ė ≈ 0 only implies the assumption
that the effects from ė are small compared to the first-order effects of the solar radiation pressure.
However, this will not always be the case. Both the long and short-term effects of solar radiation
pressure on eccentricity are discussed extensively in other sources.1 Relaxing of the aforementioned
assumptions and further potential developments of the model are left to future work.

To first order in the SRP terms, assuming ȧ ≈ 0 and ė ≈ 0, it can be shown that the only nonzero
angular acceleration term is ω̇r, given below with the nonzero angular velocity squared terms:

ω̇r = n
sin i

sin θ

(
d
dθ

(
Ω̇
)
− Ω̇

cos θ

sin θ

)
+ ϕ̇

sin i

sin θ

d
dϕ

(
Ω̇
)

(37)

ωnωr = nρ−3/2Ω̇
sin i

sin θ
(38)

ω2
n =

h2

r4
(39)

where ρ = r/a and n is the orbital mean motion. From the near-circular orbit assumption and the
assumption ȧ ≈ 0, it is implied that r(t) ≈ a, thus θ̇p ≈ n and ρ ≈ 1. These assumptions will
not be valid for long time spans if the SRP disturbance acceleration is large enough to significantly
change the chief orbit. Evaluating Eqs. (37) – (39), all nonzero kinematic terms are presented below,
explicitly in terms of NSRP:

ωr =
r

h
NSRP, ωn =

h

r2
(40)

ω̇r = ϕ̇
r

h

d
dϕ

(NSRP) (41)

ωnωr = nρ−3/2
r

h
NSRP, ω

2
n =

h2

r4
(42)

The final linearized relative motion equations are obtained and presented below in matrix-vector
form, resolved in the chief-centered LVLH frame, HS .ẍÿ

z̈

 =

 h2/r4 + 2 µ
r3

0 −nρ−3/2 rhNSRP

0 h2/r4 − µ
r3

ϕ̇ r
h

d
dϕ (NSRP)

−nρ−3/2 rhNSRP −ϕ̇ r
h

d
dϕ (NSRP) − µ

r3


xy
z


+

 0 2 h
r2

0

−2 h
r2

0 2 rhNSRP
0 −2 rhNSRP 0

ẋẏ
ż

 (43)
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If small variations in the chief orbit radius are known, and any resulting terms are of the same
order as linear SRP-associated terms, then the substitution of these variations may be desirable.
Otherwise, if r ≈ a ∀t, and e is small, the expression may be simplified further:

ẍÿ
z̈

 =

 3n2 0 −n ahNSRP

0 0 ϕ̇ ah
d

dϕ (NSRP)

−n ahNSRP −ϕ̇ ah
d

dϕ (NSRP) −n2


xy
z


+

 0 2n 0
−2n 0 2 ahNSRP

0 −2 ahNSRP 0

ẋẏ
ż

 (44)

The position and velocity-associated matrices in Eq. (44) are denoted as [Ap] and [Av], respectively.
Reusing the state representation x = [x, y, z, ẋ, ẏ, ż]>, for which one may write ẋ = [A(t)]x, the
time-varying [A] matrix is:

[A] =

[
03×3 I3×3
Ap Av

]
(45)

with all components of the linear model defined, the linearized relative orbital motion dynamics can
now be expressed in their usual form:

ẋ = [A(t)]x+ [B(t)]u (46)

The [A] matrix terms are given in Eqs. (44) – (45). The control-associated [B] matrix is given in
Eq. (26), with the lower 3 × 3 sub-matrix now pre-multiplied by [HSHP ] to resolve the resultant
control accelerations in the LVLH frame components.

APPLICATION TO SPACECRAFT FORMATION CONTROL

This section discusses and demonstrates the implementation of the new SRP-perturbed relative
orbital motion model for control.

Linear SRP-Based Formation and Rendezvous Control

Control in this paper is performed using the Linear Quadratic Regulator (LQR), which is for the
design of a control input u that minimizes the finite-time cost function shown below, under the
action of the linearized dynamics ẋ = [A]x+ [B]u.16

J =
1

2

∫ tf

t0

(
x>[Q]x+ u>[R]u

)
dt+

1

2
x>f [Sf ]xf (47)

The solution is given below:
u = −[Kx]x (48)

The time-varying gain matrix [Kx] is given in terms of [S], obtained by solving the Riccati differ-
ential equation with final condition [S(tf )] = [Sf ]:

[Kx] = [R]−1[B]>[S] (49)

˙[S] + [S][A] + [A]>[S]− [S][B][R]−1[B]>[S] + [Q] = [0] (50)

11



Controllability Analysis

Before the SRP-based control is simulated, controllability analysis provides some insight into the
problem. For completeness, the time-varying effects of the SRP perturbation are included in the [A]
matrix for the relative motion dynamics.

For an LTV system with n states, if the following is satisfied, the system is controllable:16

rank ([B0(t), B1(t), . . . , Bn−1(t)]) = n (51)

where [B0] = [B] and all other elements are given by the following:

[Bi+1(t)] = [A(t)][Bi(t)]−
d
dt

[Bi(t)] (52)

The rank of the controllability matrix, if less than n, determines the dimension of the controllable
subspace.

To facilitate this discussion for SRP-based control, the [B] matrix is now resolved into HS :

[B] =

[
03×3

[HSN ][NHP ][BC ]

]
(53)

where [BC ] is the constant part of the [B] matrix:

[BC ] = 4P (R)
A

m

((
a2 + 2ρsC1(1,1)

)
C1(1,1)[C1(σr)]

>[ẽ1]− (1− ρs)[ê1ê>1 ][ẽ1]

+
(
a2 + 4ρsC1(1,1)

)
[C1(σr)]

>[ê1ê
>
1 ][C1(σr)]

>[ẽ1]

) (54)

If the reference orientation is sun-facing, then [C1(σr)] = [I3×3] and a much simpler form is
obtained for [BC ]:

[BC ] = 4P (R)
A

m
(a2 + 2ρs) [ẽ1] (55)

For this controllability analysis, it is assumed that the reference orientation is sun-facing. The
rotation from HP to HS is time-varying, and thus the [B] matrix will be time-varying as well.
Furthermore, the [A] matrix is time-varying. The time-varying terms in the [A] matrix obtained
from Eq. (44) can be expected to evolve slowly compared to the time scale of the relative orbital
motion dynamics.

Using the SRP-perturbed system [A] matrix, the controllability matrix is obtained in terms of the
[Bi(t)] sub-matrices:

[Bi(t)] = [B′i(t)][BC ] =

[
[B′i(u)(t)]

[B′i(l)(t)]

]
[BC ] (56)

where the time-varying portion [B′i(t)] can be shown to obey the following recursive relationship
and initial values:

[B′i+1(t)] =

 [B′i(l)(t)]−
d
dt

(
[B′i(u)(t)]

)
[Ap][B

′
i(u)(t)] + [Av][B

′
i(l)(t)]−

d
dt

(
[B′i(l)(t)]

) (57)
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[B′0(u)(t)] = [03×3], [B′0(l)(t)] = [HSHP ] (58)

Using Eq. (57), and recalling [B0(t)] = [B(t)], the next two sub-matrices are shown analytically:

[B1(t)] =

[
[HSHP ]

[Av][HSHP ]− [HSHP ][ω̃S,P ]

]
[BC ] (59)

[B2(t)] =

[
[Av][HSHP ]− 2[HSHP ][ω̃S,P ]

[Ap][HSHP ] + [Av]2[HSHP ]− 2[Av][HSHP ][ω̃S,P ] + [HSHP ][ω̃S,P ]2 − [Ȧv][HSHP ]

]
[BC ]

(60)
where [ω̃S,P ] is an angular velocity term associated with the rotating frames:

d
dt

([HSHP ]) = [HSHP ][ω̃S,P ] (61)

The matrix [ω̃S,P ] is skew-symmetric, with the components of the angular velocity of frame HP

relative to HS , expressed in HP components. Note that it is assumed that angular acceleration
terms are zero because the effect of rotating frame angular acceleration terms is quite small for
near-circular planetary and spacecraft orbits. Thus, [ ˙̃ωS,P ] ≈ [03×3].

The symbolic expressions for each sub-matrix were obtained via MATLAB and saved as func-
tions. To enforce the zero angular acceleration condition, the time-varying angular terms were
truncated to their linear approximations, θ ≈ θ0 +nt and ϕ ≈ ϕ0 + ϕ̇t. The final expression for the
controllability matrix is far too long and complex to include here.

Table 1 gives hypothetical parameters for evaluating the controllability matrix, and for the first set
of simulation results to follow this controllability analysis. The optical parameters for this first result
are values corresponding to a completely reflective surface,17 but adding absorption doesn’t affect
the conclusion of the controllability analysis. This hypothetical simulation data is representative of
some high-altitude orbit over a large asteroid. Only two-body gravity and SRP perturbations are
implemented in the truth model, since this paper is primarily concerned with the solar radiation
pressure perturbation, which would be a dominant disturbance at this altitude.

Table 1. Simulation 1 Physical Parameters

Parameter Value
oe0 = (a, e, i,Ω, θ) 200, 0.0, 86.0◦, 0.0◦, 0.0◦

δoe0 = (δa, δe, δi, δΩ, δθ) 0.0, 0.00125, 0.05◦, 0.0◦, 0.0◦

Optical constants A
m = 0.5m2/kg, B = 0.8, s = 0.7, ρ = 0.3

Primary Body Orbit Radius R = 3.5904× 108km (2.4AU)
Primary Body Orbit Angles κ = 4◦, ϕ0 = 90◦

Primary Body Physical Parameters d = 40km, ρ = 2.119g/cm3,m = 7.1× 1016kg

Using the parameters in Table 1, the rank of the controllability matrix may be obtained for var-
ious times in the simulation. Numerical results show that the rank of the controllability matrix is
consistently 6, using the default tolerance in MATLAB. Lowering the tolerance (e.g. to 1× 10−10),
the rank of the controllability matrix reduces to 4. These numerical results suggest that the system
is fully controllable, with kinematic coupling enabling weak controllability of the spacecraft motion
along û.
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Testing the SRP-Perturbed Relative Motion Model

First, results are presented to demonstrate that the dynamical model obtained in this paper works
as expected. Namely, the model given in Eq. (44) was simulated for the data given in Table 1, along
with a nonlinear truth model. The results are given in Figure 2. Note that there is close agreement
between the SRP model and the nonlinear truth model for the 6 orbits simulated. This shows that
the linearized SRP model is properly accounting for the SRP disturbance acceleration’s effects.

Controlled Simulation Results

With the efficacy of the linearized dynamical model demonstrated, finite-time LQR control is now
implemented to obtain the optimal control signals u(t) = σc(t). Of particular interest is the full
controllability of the system implied by the analysis in the preceding section. It was hypothesized
that controllability is weakest in the projection of the motion along û. Setting the relative motion
to take place near the terminator plane allows the motion along û to be easily investigated. Without
treating the out-of-plane associated elements of the [Q] matrix differently from the in-plane asso-
ciated elements, simulation results show that the motion in the z direction fails to settle. However,
by over-weighing the cost of z and ż in the dynamics, the controller takes a strategy that seeks to
minimize the motion in this mode, by delaying the settling of the x and y motion.

The first simulation demonstrates relative motion regulation control to a chief in a terminator
orbit. The non-optical physical constants and initial conditions are unchanged from the uncontrolled
simulation - thus are given in Table 1. The control parameters and the new optical parameters for
this simulation are given in Table 2.

Table 2. Control Parameters and Optical Parameters for Simulation 1

Parameter Value
Q Q = I6×6, except Q(3, 3) = Q(6, 6) = 60
R 100I3×3
Sf I6×6
t0,∆t, tf t0 = 0,∆t = 10, tf = 2581510 (29.88 days)
Optical constants A

m = 0.5m2/kg, B = 0.6, s = 0.25, ρ = 0.3

The position deviations and control signals are given in Figures 4 and 5. The results show that
for this case, the controller functions as intended – successfully controlling the deputy spacecraft to
very near the origin of the LVLH frame, over the course of one month. This is done with < 10◦

attitude deviations from the sun-pointing direction. This is important in the context of this work,
because the attitude variations must remain small in order for the single-plate SRP model to be
accurate.

The second simulation demonstrates control to change a GEO orbit longitude by 0.544◦, or 20
km in the along-track direction, over the course of 30 days. The optical parameters are the same
as in the first simulation, but the other physical parameters and the new control parameters are
different. These are given in Tables 3 and 4 respectively. This simulation neglects the perturbative
effects of lunar and solar gravity, which manifest via a long term (53 year) precession and nutation
of the orbit.18 In this particular case, a scale analysis of the lunar gravity perturbation will show that
there would be sufficient control authority to cancel such perturbations in addition to controlling the
spacecraft to the desired location.

14



Figure 2. SRP-Perturbed Relative Motion

Figure 3. SRP-Based Control of Relative Motion, Case 1

The motion in LVLH x and y components is given in Figure 6. The z motion is quite insignificant
in this case, so it is not shown. Note that the scale of the x motion is magnified in the figure to
show the bowed nature of the trajectory followed, and to clearly show the oscillations in the radial
direction. Also note the overshoot in the y direction followed by the slow settling behavior around
the origin. There are two time scales of the settling behavior. Much of the separation is settled
in the along-track direction within 15 orbits, but the control action in the remaining orbits slowly
dampens out the oscillations mainly in the x and y components. The large final cost on the relative
state ensures that in the final 3-4 orbits, the relative motion is further settled.
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Figure 4. Controlled Position, Case 1

Figure 5. Control Signals, Case 1

Figure 6. SRP-Based Control of Relative Motion, Case 2

These results suggest that relatively large maneuvers in the GEO belt are possible with SRP-
based linear control, assuming sufficient time is available for such maneuvers. Faster settling results
would likely be possible through iteration on the current selection of control parameters, but these
results are an adequate demonstration of capability. The results from cases 1 and 2 show that
both closed-loop rendezvous control and larger changes to a GEO orbit using a virtual chief are
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Figure 7. Controlled Position, Case 2

Figure 8. Control Signals, Case 2

Table 3. Simulation 2 Physical Parameters

Parameter Value
oe0 = (a, e, i,Ω, θ) 42157, 0.0, 0.0◦, 0.0◦, 0.0◦

δoe0 = (δa, δe, δi, δΩ, δθ) 0.0, 0.0, 0.0◦, 0.0◦, 0.544◦

Primary Body Orbit Radius R = 1.496× 108km (1.0AU)
Primary Body Orbit Angles κ = 23.5◦, ϕ0 = 90◦

Primary Body Physical Parameters r = 6371 km, µ = 398600 km3/s2

Table 4. Control Parameters and Optical Parameters for Simulation 2

Parameter Value
Q 0.5I6×6
R 105I3×3
Sf Sf = 108I6×6, except Sf (1, 1) = 1010 & Sf (4, 4) = 1011

t0,∆t, tf t0 = 0,∆t = 80, tf = 2584240 (30 days)
Optical constants A

m = 0.5m2/kg, B = 0.6, s = 0.25, ρ = 0.3

possible using small sustained attitude variations to change the resultant SRP disturbance force. This
is simulated for spacecraft with relatively realistic area-to-mass ratios and unremarkable (neither
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highly reflective or absorptive) optical properties. Simulations with smaller area-to-mass ratios still
display the same characteristic behavior, but with longer time spans needed to achieve the same
control objectives.

CONCLUSIONS

This paper derives a new relative motion model accounting for the effects of the solar radia-
tion pressure (SRP) disturbance acceleration on spacecraft relative motion. The kinematics of the
SRP-perturbed chief orbit are absorbed into the linearized system [A(t)] matrix to accommodate in-
frequent updates of the chief orbit parameters. The model demonstrates the feasibility of SRP-based
control in multiple environments of interest for spacecraft with unremarkable geometry and surface
optical properties. The model is derived from an existing multi-facet model of SRP force, obtain-
ing an illuminated body averaged single-plate model that should be valid for small angular attitude
deviations, especially for spacecraft with large solar arrays, or otherwise relatively flat spacecraft.
Numerical simulations of SRP-based control for spacecraft with unremarkable geometric and opti-
cal properties establish the feasibility of the use of attitude-dependent SRP force for formation and
rendezvous control.

Future work will explore refinements to the methods used in this work, and will detail the lim-
itations of the model and control strategy used in this work. An in-depth study how performance
changes with differing optical properties would also be useful. Future work will also include higher-
fidelity multi-facet spacecraft SRP modeling that is valid for larger attitude variations, and explo-
rations of how to account for independent articulation of solar arrays in a box-wing spacecraft
model. Finally, the study of uncontrolled SRP-perturbed formation dynamics may also continue,
with updated models to ease the restrictions made by assumptions in deriving this model.

A multi-fidelity modeling approach could enable a low-level control strategy (linear or otherwise)
to be corrected for high precision SRP-based control. Look-up tables generated in advance (or
series fits of such data) could take place of the linearized approximation of the attitude-dependent
variations in the magnitude and direction of the resultant SRP acceleration. This work is thus the
first step towards a goal of accurate high-fidelity SRP-based formation and orbit control.
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