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Gravitational Perturbations, Nonlinearity and Circular Orbit
Assumption Effects on Formation Flying Control Strategies

Kyle T. Alfriend‡, Hanspeter Schaub†, Dong-Woo Gim

Hill’s equations have been used in most formation flying studies to determine
relative motion orbits and control strategies.  Hill’s equations assume the Chief

satellite orbit is circular, the Earth is spherically symmetric and the nonlinear

terms in the relative motion variables can be neglected.  This paper presents an
approach for determining the effect of these assumptions on the fuel

consumption for establishing and maintaining a relative motion orbit.  Initial
results on the errors in predicting the relative motion using Hill’s equations are

presented.

Nomenclature
Subscripts

c – refers to Chief satellite

d – refers to deputy satellite

0 – refers to conditions at the initial time

Reference frames

E – Earth centered inertial

C – chief orbit frame with x-axis along the radius vector, the y-axis in the direction of motion and

the z-axis perpendicular to the orbit plane. Origin coincides with chief satellite. Unit vectors

are 
r r r
e e exc yc zc, ,( ).

D – deputy orbit frame with u-axis along the radius vector, the v-axis in the direction of motion

and the w-axis perpendicular to the orbit plane. Origin coincides with deputy satellite. Unit

vectors are 
r r r
e e exd yd zd, ,( ).

Variables

T BA  - transformation matrix for transforming a vector from the A frame to the B frame.
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r r
R Rc d,( ) - position vectors of the chief and deputy.

r
rd  - position of the deputy relative to the chief.
r r
V Vc d,( ) - velocity of the Chief and deputy.

V Vr t,( ) - radial and tangential components of the velocity.
r
vd  - velocity of the deputy relative to the chief.

v vdr dt,( ) - radial and tangential components of the relative velocity vector.

a – semi-major axis

e – eccentricity

i – inclination

Ω – right ascension

ω – argument of perigee.

f – true anomaly

θ – argument of latitude, θ=f+ω

q1 – ecosω
q2 – esinω
δα  - variation of the variable α with respect to the chief orbit.

INTRODUCTION
Spacecraft flying in precise formation is a subject drawing considerable attention within

NASA and the DoD 1.  O-orbit experiments are planned within the near future 2,3.  Satellites flying

in formation is not a new challenge, but flying in precise formation and operating autonomously

is a significant challenge.  It is important to design the relative motion orbits such that fuel

consumption is minimized and lifetime maximized.  Most studies 4-6 have used Hill’s equations 7

(sometimes called the Clohessy-Wiltshire or CW equations) to describe the relative motion of the

satellites. These equations assume that a) the Earth is spherically symmetric, b) the Chief or

reference satellite orbit is circular, and c) the equations can be linearized in the relative motion

variables. For small formations the effects of the neglected nonlinear terms are probably

negligible, but the effects of the ignored gravitational perturbations and the eccentric reference

orbit can be significant7-9.  Formations that will emulate large apertures will require some of the

satellites to have out-of-plane motion relative to the reference orbit.  This out-of-plane motion is

achieved by some combination of small changes in the inclination, δi , and the right ascension,

δΩ. (see Figure 1) An inclination difference results in the maximum out-of-plane separation

occurring at the maximum latitude.  In contrast, a right ascension difference results in the

maximum separation occurring at the equator. A constellation emulating a large aperture at all

times would have satellites with varying combinations of inclination and right ascension

differences. A differential inclination has three negative effects, it causes the deputy satellites to

have a slightly different nodal precession rate, a slightly different orbit period and a slightly

different argument of perigee rate.  Since all three of these effects cause the two satellites to
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slowly separate these effects must be negated, either by control or design of the relative motion

orbit.  Reference 7 derives initial conditions for minimizing these effects by selection of the

Figure 1 Achieving out-of-plane motion

orbital parameters. However, in most cases some control will still be needed.  Some control

approaches are presented in references 4,6,8 and 9.  An unanswered question is what effect does

using Hill’s equations for the control have on fuel consumption.  The gravitational perturbations

create short period oscillations in the orbital elements that then create short period oscillations in

the relative motion variables that are not captured by Hill’s equations. If these oscillations are

outside of the deadband of the control system they cold be interpreted by the control system as a

secular rate and the control system would then try to negate these natural motions. The reference

orbit eccentricity can have a similar effect. Trying to continually negate these natural motions

will waste fuel.  How much is the unanswered question.  Also, if the model does not include the

gravitational perturbation effects then fuel may be wasted trying to negate the differential secular

rates.  The system will not know how to select the correct orbital parameters to minimize the

secular rates.  The purpose of this paper is to develop a method for evaluating these effects and to

present some results on the errors that occur in estimating the relative motion with Hill’s

equations. Essentially, we develop a state transition matrix for a system that includes the

gravitational perturbations and reference orbit eccentricity.  Research is underway on another

method for a state transition matrix that will include the effect of the neglected nonlinear terms.

One of the methods includes the effects of the nonlinear terms in the relative motion variables. A

state transition matrix that includes the reference orbit eccentricity for small eccentricities has

been derived by Melton 10.

maximum
out-of-plane

i1
i2

1Ω
2Ω

maximum
out-of-plane
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HILL’S EQUATIONS
Referring to figure 2 the relative motion is described using reference frame O, which is a

rotating reference with its origin at the reference satellite, the x-axis is along the radius vector, the

y-axis is in the orbit plane in the direction of motion, and the z-axis is perpendicular to the orbit

plane. Assuming the reference satellite orbit is circular and there are no gravitational

perturbations the linearized relative equations of motion are:

˙̇ ˙

˙̇ ˙

˙̇

x ny n x

y nx

z n z

n

− − =
+ =

+ =
=

2 3 0

2 0

0

2

2

mean motion of reference orbit

(1)

Note that the out-of-plane motion is decoupled from the in-plane motion. The solution is

x x y n x y n x n

y y x n x y n x n x y n

z z z n

nt

= +( ) − +( ) + ( )
= −( ) − +( ) + ( ) + +( )
= + ( )
=

2 2 3 2

2 3 2 2 2 3 2

0 0 0 0 0

0 0 0 0 0 0 0

0 0

˙ / ˙ / cos ˙ / sin

˙ / ˙ / ˙ / cos ˙ / sin

cos ˙ / sin

ψ ψ

ψ ψ ψ

ψ ψ
ψ

(2)

For periodic motion

2 00 0x y n+ =˙ / (3)

This condition is just the requirement that the semi-major axes of the two satellites must be equal.

Also requiring that the center of the relative motion be at the reference satellite periodic relative

motion orbits are given by

x x y A

y y x A

z z z n B

A x y x y

B z z n

= + ( ) = +( )
= − = +( )
= + ( ) = +( )
= +( ) =

= +( ) =

0 0

0 0

0 0

0
2

0
2 1 2

0 0

0
2

0
2 2 1 2

2

2 2

4 2

cos / sin sin

cos sin cos

cos ˙ / sin sin

/ , tan /

˙ / , tan

/

/

ψ ψ ψ α

ψ ψ ψ α

ψ ψ ψ β

α

β nznz z0 0/ ˙

(4)

Note that the projection of the relative periodic orbits in the x-y (orbit) plane is a 2-1 with the long

axis in the y-direction.  Two periodic orbits of interest are a) a circular relative motion orbit, and

b) an orbit for which the projection of the motion in the horizontal (y-z) plane is a circle. This has

application for emulating large circular apertures.  The initial conditions for these orbits are:
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Circular Relative Orbit

B A

x y z A

= =

+ + =

3

42 2 2 2

,α β
(5)

This relative motion orbit is inclined at 30 degrees to the horizontal plane.

Circular Horizontal Plane Orbit

B A

y z A

= =

+ =

2

42 2 2

,α β
(6)

This relative motion orbit is inclined at 26.56 degrees to the horizontal plane.

The TechSat21 program has three satellites flying in formation. One option for a portion of

the program is the circular horizontal plane orbit.  In this configuration the three satellites would

form an equilateral triangle in the horizontal plane. Thus, the constellation would appear to be a

rotating equilateral triangle. For this configuration the differential inclination will be different for

each satellite.  Thus, the rate that each satellite drifts from the equilateral triangle configuration

will be different.  Assume that at t=0 the chief satellite is on the equator and the constellation is

as shown in Figure 2 and is rotating counterclockwise as a circle of radius 2A.  The initial

conditions for the three satellites are

y A y z z An

y A y An z A z An

y A y An z A z An

10 10 10 10 1

20 20 20 20 2

30 30 30 30 2

2 0 0 2 0

3 3 120

3 3 120

= = = = =

= − = − = = − =

= − = = − = − = −

, ˙ , , ˙ ,

, ˙ , , ˙ , deg

, ˙ , , ˙ , deg

α

α

α

(7)

The change in inclination and right ascension to achieve this desired motion when the chief

satellite is on the equator is

y

z

1

2 3

2A
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δ δi z Rn z R= = −˙ / ,0 0Ω (8)

where R is the radius of the chief’s orbit.  Thus, the inclination and right ascension changes for

the three satellites are

δ δ

δ δ

δ δ

i A R

i A R A R

i A R A R

1 1

2 2

3 3

2 0

3

3

= =

= − = −

= − =

/ ,

/ , /

/ , /

Ω

Ω

Ω

(9)

Gravitational Perturbation Effects

The primary gravitational perturbation effect is due to the equatorial bulge term, J2.  The J2 term

changes the orbit period, a drift in perigee, a nodal precession rate and periodic variations in all

the elements. Let’s consider the right ascension rate which is

˙ cosΩ = −






3
2 2

2

J
R

p
n ie (10)

If a change in inclination is used to create out-of-plane motion a differential nodal precession rate

occurs which causes the planes to slowly separate. The differential rate is

δ δ˙ ˙ tanΩ Ω= − c i i (11)

Consider the case when the out-of-plane motion is caused by only an inclination change. This
means that at equator crossings there is no out-of-plane separation. Letting  ρ = 2A  be the radius

of the relative motion orbit the growth in the out-of-plane separation at the equator is

δρ
ρ

i per day( ) = 0 118. (12)

Thus, the circle begins to distort. The rate of distortion is a function of the changes in inclination

and right ascension used to create the out-of-plane motion, thus it would be different for each

satellite. The question is what is the effect on fuel consumption and system performance of using

Hill’s equations for the control system model and continuing to let the control system correct this

growth. Including these effects in the design of the relative motion orbits can minimize this

growth7 and including them in the control system model may improve fuel consumption and

reduce the frequency of control. In addition to these secular out-of-plane effects there are in-plane

secular effects and the effects of the short period variations due to J2 and the orbit eccentricity.
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Developed in this paper are two analytic methods that can be used to evaluate the effects of

neglecting these terms in the orbit design and control.

PROBLEM FORMULATION
To evaluate the effect of neglecting the chief satellite eccentricity, the gravitational

perturbations and nonlinearities the control needs to be evaluated with and without these effects

included in the model. Thus, the objective is to obtain a state transition matrix with these effects

included. In this paper it will be assumed that the eccentricity is small, basically it will be
assumed that e O J= ( )2 . A state transition matrix for small eccentricity has been obtained by

Melton 10.  There are two approaches for obtaining the state transition matrix. One approach is to

use the geometry of the problem and realize that the deputy relative motion is a result of small

changes in the chief satellite orbital elements.  This method will be called the geometric method

and is developed in this paper. A second approach is to write the equations of motion in the

rotating reference frame, but include the gravitational perturbations and not assume a circular

orbit for the chief satellite. In addition, the non-linear terms in the relative motion variables can

be included. A solution using a perturbation method can then be used to obtain a solution.  There

are several perturbation methods that can be used to obtain the problem.  A perturbation solution

of this problem using Hamiltonian mechanics and Lie Series is currently underway and will be

reported on in a later publication. The primary reasons for using this approach are:

•  The large amount of algebraic manipulations required are easily implemented on the

computer.

• The solution will be in a form to  easily evaluate what effects need to be included in the state

transition matrix. For example, do the periodic effects due to J2 need to be included or is it

sufficient to just include the secular effects.

This method will be referred to as the Hamiltonian method.

Geometric Method

Let

x

e

T

T

x x y y z z

a i q q

= ( )
= ( )

, ˙, , ˙, , ˙

, , , , ,θ 1 2 Ω
(13)

where θ is the argument of latitude and q e q e1 2= =cos , sinω ω .  These variables are used

because the true anomaly and argument of perigee are undefined for zero eccentricity. Since the

relative motion is small the approach will be to express the orbital elements of the deputy as a

Taylor series about the chief satellite elements. Thus,

e e ed c= + δ (14)
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W now want to relate the δe  to the relative motion state x . The deputy’s position is

r r r r r r
R R R x e ye zed c xc yc zc= + = +( ) + +ρ (15)

The deputy’s position in the chief reference frame is also given by

r r
R T T Rd

C CE ED
d
D= (16)

The transformation from the orbit frame O (C  or D) to the inertial frame E is given by

T i i

i i

T

c c s cis c s s cic s si

s c c cis s s c cic c

OE

OE

= −














−















−














=
− +

− − − +

cos sin

sin cos cos sin

sin cos

cos sin

sin cos

θ θ
θ θ ω

θ θ θ θ θ
θ θ θ θ θ

0

0

0 0 1

1 0 0

0

0

0

0

0 0 1

Ω Ω
Ω

Ω Ω Ω Ω
Ω Ω Ω Ω sisi

sis sic ciΩ Ω−















(17)

Some identities that will be used are

e f e q q

e f e q q

V R

V R
R

p
e f

h

p
q q p a e

h

R p
e f

an q

t

r

cos cos cos sin

sin sin sin cos

˙

˙
˙

sin sin cos ,

˙ cos

˙ cos

= −( ) = +

= −( ) = −

=

= = = −[ ] = −( )

= = +( )

= +−

θ ω θ θ
θ ω θ θ

θ

θ θ θ

θ µ

θ η θ

1 2

1 2

2

1 2
2

2
2

1
1

1

1

1 ++( )q2
2

sinθ

(18)

Now expand eq. (16) about the chief satellite motion.

r

r

R T T T

R R

I T T

R R

R

R R

R T

T

T

T

d
C CE EC EC

c c
CE EC

c c

d
C

c c

c
CE

= +( )
+













= +( )
+













=
+













+














δ
δ

δ
δ

δ δ
δ
δ

0

0

0

0

0

0

11

12

13

(19)
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The δTij are

δ δθ δ δ
δ δθ δ δ

δ δθ θ δ

T T T T i

T T T T i

T T i i

c c c c

c c c c

c c c

11 21 12 13

12 22 11 13

13 23

= − +
= + −

= + ( )

Ω Ω
Ω Ω

( sin )

( cos )

sin cos

(20)

Substitute eq. (20) into eq. (19).

r

r

R

R R

R T

T T T i

T T T i

T i i

R

R R

d
C

c c

c C E

c c c c

c c c c

c c c

d
C

c c

=
+













+
− +
+ −

+ ( )















=
+








δ δθ δ δ
δθ δ δ

δθ θ δ

δ

0

0

0

0

2

21 12 13

22 11 13

23

Ω Ω
Ω Ω

( sin )

( cos )

sin cos






+ +
− +















R i

i i
c c

c c c

0

δθ δ
θ δ θ δ

Ω
Ω
cos

cos sin sin

(21)

Thus,

x R

y R i

z R i i i

c

c c

c c c c

=

= +( )
= − +( )

δ

δθ δ

θ δ δ

Ω

Ω

cos

cos sin sin

(22)

where

R
a e

e f

a q q

q q

R
R

a
a R

a

p
q q

R

p
q q q qc

c
c

c

c
c

c

c
c c c c c c

=
−( )

+
=

− −( )
+ +

= −





( ) − − +( ) + +[ ]

1

1

1

1

2

2
1
2

2
2

1 2

1 1

2

1 2 1 2

cos cos sin

sin cos cos sin

θ θ

δ δ δ θ θ δθ δ θ δ θ

(23)

The deputy’s velocity in the chief reference frame is

r r r r
V V x y e V y x e zed

C
rc c x tc c y z= + −( ) + + +( ) +˙ ˙ ˙ ˙ ˙θ θ (24)

Also,
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r

r

V T T

V

V T T T

V V

V V

V

V V

V V T

V T V T

V T V T

V T V T

d
C CE ED

rd

td
CE EC CE

rc r

tc t

d
C

rc rc

tc tc
CE

rc tc

rc tc

rc tc

=














= +( )
+
+















=
+
+















+
+
+
+

0 0

0

11 21

12 22

13 23

δ
δ
δ

δ
δ

δ δ
δ δ
δ δ















(25)

δ δθ δ δ
δ δθ δ δ
δ δθ θ δ

T T T T i

T T T T i

T T i i

c c c c

c c c c

c c c

21 11 22 23

22 12 21 23

23 13

= − − +
= − + −
= − +

Ω Ω
Ω Ω

sin

cos

cos cos

(26)

Substituting gives

r
V

V V

V V V i

i i

V

i

i i
d
C

rc rc

tc tc rc c

c c c

tc

c

c c c

=
+
+















+ +
− +















+
− −

+















δ
δ δθ δ

θ δ θ δ

δθ δ

θ δ θ δ0

0

0Ω
Ω

Ω

Ω
cos

cos sin sin

cos

sin sin cos

(27)

V R
h

R

p

R p
e f

p
q q

V
V

p
p

p
q q q q

tc c c
c

c

c

c c
c c

c
c c c c

t
tc

c c
c c c c c c

= = = = +( ) = + +( )

= − + + + − +( )[ ]

˙ cos cos sin

cos sin sin cos

θ
µ µ µ θ θ

δ δ µ δ θ δ θ θ θ δθ

1 1

2

1 2

1 2 1 2

(28)

The variation in the radial velocity is

V R
p

q q

V
p

V p
p

q q q q

rc c
c

c c c c

r
c

rc
c

c c c c c c

= = −( )

= − + −( ) + +( )[ ]

˙ sin cos

sin cos cos sin

µ θ θ

δ δ µ δ θ δ θ θ θ δθ

1 2

1 2 1 2
1

2

(29)

Substituting for δp gives
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δ δ µ θ θ δθ

µ θ δ µ θ δ

V
V

a
a

p
q q

V a q

p p
q

V a q

p p
q

t
tc

c c
c c c c

tc c c

c c
c

tc c c

c c
c

= − + − +( )

+ +






+ +








2 1 2

1
1

2
2

sin cos

cos sin

(29)

δ δ δ δ

µ δ θ δ θ θ θ δθ

V
p

V
p

a
a a q q q q

p
q q q q

r
c

rc
c

c
c c c

c
c c c c c c

= −






− +( )











+ −( ) + +( )[ ]

1
2

2 21 1 2 2

1 2 1 2sin cos cos sin

(30)

The velocity development is now complete.  Using eq. (22b) we get

˙

˙ ˙ /

˙ cos sin sin cos sin

x V

y x V R y V

z V V i V V i

r

c rc c t

tc c rc c tc c rc c c

=

+ − ( ) =

= +( ) + −( )

δ

θ δ

θ θ δ θ θ δΩ

(31)

This completes the development.  We now have

x e= Aδ (32)

The elements of A and its inverse A-1 are given in the Appendix.  Please note that we have made

no restrictions on the orbital elements. They can be two body elements or they can be the solution

from an analytic theory such as Brouwer’s theory 11. Whatever theory is used we can develop

δ δ

δ

e e

e x

et t t

A t t

( ) = ( ) ( )
= ( ) ( )−

Φ 0

0
1

0 0

(33)

giving

x xx

x e

t t

t A t t A t

( ) = ( )
( ) = ( ) ( ) ( )−

Φ

Φ Φ
0

1
0

(34)

The development is now shown for a circular chief orbit.  Since there are no perturbations

the only time varying element is the argument of latitude.  Using the angular momentum integral
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r d pdt

p d

q q
dt

2

3

1 2
2

1

θ µ

µ
θ

θ θ

=

+ +( )
=

cos sin

(35)

Now integrate

p d

q q
t

3

1 2
2

1
0

µ
θ

θ θθ

θ

+ +( )
=∫ cos sin

(36)

Expand this equation in a Taylor series about the chief orbit.
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Now set e=0 and use eq. (42).

δθ δθ δ δ θ δ θ= − + + −( )0 1 21 5 2 1. sin cosn
a

a
q qc

c
c c (38)

Therefore,
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(39)

RESULTS
To evaluate how accurately the method developed here estimates the relative motion and to

determine the errors resulting from using Hill’s equations the following example was used. The

initial conditions used for the deputy result in the Circular Horizontal plane orbit when the Earth

is spherically symmetric and the chief satellite orbit is circular.

Chief orbital elements               Deputy initial conditions and elements
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=
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1
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5

. deg
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.

Ω

The method is first compared to Hill’s equations and the exact solution for a spherically

symmetric Earth. Figure 3 shows the error in the new method for one day.  The errors are only

several centimeters.  Figure 4 shows the errors resulting from the use of Hill’s equations. The

errors in Hill’s equations are considerably larger than the geometric method. For these results to

obtain the mean motion in Hill’s equation we used the mean semi- The periodic variations result

from the circular orbit assumption and the secular growth in the in-track direction is mostly due

an incorrect mean motion.

Figure 5a shows the relative motion trajectory with the gravitational perturbations included

(J2-J4) and Figure 5b show the same trajectory using the Geometric Method.  Obviously the

Geometric Method is incorporating the primary eccentricity and gravitational perturbation effects.

Figures 6 and 7 show the errors that occur when estimating the motion with the Geometric

Method and Hill’s equations, respectively.  The Geometric results in much smaller errors. The in-

track error of 20 m after one day is the result of approximately a 2m error in semi-major axis.  In
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Figure 3 Geometric Method Errors for Spherically Symmetric Earth

Figure 4 Hill’s Equations Errors for Spherically Symmetric Earth
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                                      Exact                                                             Geometric Method

Figure 5 Horizontal Plane Trajectory

Figure 6 Geometric Method Errors With Gravitational Perturbations
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Figure 7 Hill’s Equations Errors With Gravitational Perturbations

Hill’s equations the mean semi-major axis was used to compute the mean motion, otherwise, the

errors would be much larger.

CONCLUSIONS
An algorithm for relating the orbital element changes to the relative motion variables has

been developed.  This algorithm is used in the development of a state transition matrix that

includes the effects of the chief satellite orbit eccentricity and the gravitational perturbations.

This state transition matrix was developed by considering the geometry of the problem, not by

solving the differential equations. The errors in estimating the relative motion are much less than

with using Hill’s equations.

Evaluation of the method is continuing.  Research is also underway for solving the relative

equations of motion using Hamiltonian mechanics and Lie Series.
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Appendix A - The A Matrix

The non-zero elements of A and A-1 are
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