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Abstract
Debris strikes on operational spacecraft are becoming more common due to increasing numbers of space objects.

Sample return missions indicate hundreds of minor strikes, but rigorous analysis is often only performed when a strike
causes an anomaly in spacecraft performance. Developing techniques to identify and assess minor strikes that do not
immediately cause anomalous behavior can help to validate models for debris populations, perform risk assessments,
and aid in the attribution of future anomalies. This study introduces debris strikes to a spacecraft dynamics simulation
and assesses the effect on spacecraft telemetry. Various signal processing and change detection techniques are used
to identify strikes in noisy telemetry and estimate strike parameters. Matched filter wavelets are developed to identify
the effects on state telemetry, where errors are autonomously corrected by the spacecraft attitude control system. A
bank of matched filters is used to estimate the parameters of the strike based on a priori knowledge of the spacecraft’s
response characteristics. A sequential probability ratio test is used to highlight abrupt changes in the spacecraft’s
angular momentum. Monte-Carlo analyses are conducted to characterize the performance of these algorithms. The
results of the various techniques are compared in terms of correctly identifying the debris strikes and accurately
estimating the strike parameters. Developing the capability to catalog and characterize minor debris strikes allows any
spacecraft to be used as an in situ debris sensor.
Keywords: Debris strike, perturbation, attitude, telemetry, matched filter, change detection.

1. Introduction

The population of trackable fragmentation debris has
more than doubled in the past 25 years [1]. This is es-
pecially concerning because while trackable debris can
be avoided by maneuvering satellites, most fragmentation
events also release clouds of debris too small to track. The
Space Surveillance Network (SSN) tracks debris down to
around 10 cm in LEO and 70 cm in GEO [2], but a 1 cm
piece of debris can cause catastrophic damage to a space-
craft if it hits a sensitive component [3, 4]. As of Jan-
uary 2019, there are approximately 34,000 debris objects
greater than 10 cm in orbit; but there are approximately
900,000 objects between 1 cm and 10 cm [5]. Therefore,
well under 10% of the potentially hazardous debris popu-
lation is tracked.

However, there have been some indications that current
debris models may be overly conservative. This is bur-
densome for ongoing programs as it makes it difficult to
show compliance with debris mitigation standards. A re-
cent study by the NASA Engineering and Safety Coun-

cil (NESC) found that NASA’s debris model consistently
overpredicted the likelihood of failure across several case
studies [6].

Two recent events illustrate the potential effects of
strikes from untracked debris. In August of 2016, the
Sentinel-1A spacecraft experienced an anomaly consist-
ing of an abrupt attitude perturbation (Fig. 1) coupled with
a slight orbit change and simultaneous decrease in solar
power output. On-board cameras confirmed a debris strike
on the solar array. However, the solar array strike was
non-catastrophic and operations continued nominally [7].
More recently, in April 2019, Intelsat-29e experienced an
abrupt anomaly resulting in a fuel leak and shed debris,
culminating in the total loss of the satellite. The failure
review board concluded that the anomaly was caused by
either a particle strike or an electrostatic discharge event
coupled with an existing harness flaw [8].

Taking these facts together, there is a significant pop-
ulation of untracked hazardous debris with the potential
to grow rapidly. There is reason for concern about the
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Fig. 1: Rate gyro measurements from Sentinel-1A anomaly
show an abrupt spike in rate which is corrected by the at-
titude control system (ACS) [7]

accuracy of debris models, but in situ measurements are
difficult to obtain, especially for the larger and potentially
hazardous untracked population. This paper investigates
an innovative method to obtain in situ measurements of
debris that is too small to track but still large enough to
effect a spacecraft. It accomplishes this by applying dig-
ital signal processing (DSP) and change detection (CD)
techniques to spacecraft attitude control system (ACS)
telemetry to identify and assess subtle indicators of debris
strikes.

Most prior work on detecting debris strikes involves
the assessment of a specific event or mission. Similar
to the Sentinel-1A anomaly, a recent strike on NASA’s
Magnetospheric Multiscale (MMS) constellation caused
anomalous behavior but was fully recoverable [9]. The
strike was observed as a loss of one shunt resistor and a
spike in the plasma coupled with a dynamic event. On the
spin-stabilized MMS spacecraft the dynamic event caused
ringing in the accelerometer telemetry, excitation of boom
vibration resulting in atypical nutation of the transverse
rotation rates, and temporary loss of valid startracker atti-
tude fix. In both the Sentinel-1A and the MMS events the
strike caused anomalous (but recoverable) behavior which
resulted in a thorough investigation of the telemetry. A
smaller strike with more subtle indicators may go unno-
ticed.

There have been several papers on the results of sample
return missions [10, 11] or on custom hardware which is
flown specifically to detect debris [12, 13]. There are a
handful of studies which use data from non-purpose-built
hardware to detect impacts on orbit. The bulk of these
detect dust impacts on antennas [14]. However, the dust
impacts have masses around 10´11 g or less so the ability
of this population to harm satellites is limited. This paper
investigates strikes large enough to perturb the spacecraft
dynamics, since the hazard is from debris pieces large
enough to cause damage if impacting sensitive compo-
nents.

Some key work has been done by ExoAnalytic Solu-
tions on detecting ’momentum impulse transfer events’
on GEO spacecraft using their global telescope network.
They have proven a capability to detect orbit perturba-
tions with in-track velocity changes of 0.2 - 10 mm/s [15].
Some of these are explained with rigorous high-fidelity
modeling of solar radiation pressure, but others remain
unexplained and could be caused by on-board systems or,
potentially, debris impacts.

A similar concept is discussed in a recent NESC report
evaluating risk predictions with on-orbit assets [6]. This
report compares the predicted vs. reported failures for
ISS radiators and pressurized modules and for three LEO
satellite systems. For one LEO constellation, seven events
had been observed where satellites experienced sudden
unexpected movements thought to be caused by debris.
These movements consisted of abrupt changes in satellite
mean altitude or rotation rates. One of the recommen-
dations of the NESC report is to collect data on satellite
orbital perturbations and momentum changes. This pa-
per develops algorithms to accomplish that using DSP/CD
techniques to enhance the ability to identify subtle strikes.

While prior work focuses on specific events, this pa-
per develops methods to detect strikes which may not oth-
erwise be observed. It leverages established techniques
from other fields to aid in solving the untrackable debris
problem. In approaching the problem from the reverse di-
rection, identifying subtle strikes instead of responding to
anomalous behaviors as they occur, it allows spacecraft
operators and the debris community to proactively im-
prove models and methods for assessing debris risks and
attributing anomalies.

A spacecraft dynamics simulation is used to model
the effect of debris strikes on ACS telemetry. The nu-
merical simulation models a 3-axis controlled rigid-body
spacecraft with four reaction wheels maintaining pointing
along a reference trajectory (Section 2.1). Debris strikes
are applied to the simulation per Section 3.1, while state
noise and measurement noise obfuscate the spacecraft’s
response to the strikes. Section 3.2 investigates the abil-
ity of matched filters to identify the ’signals’ produced in
spacecraft state telemetry during a debris strike. This in-
cludes developing thresholds for detection (Section 3.2.2),
developing methods to estimate strike parameters (Sec-
tion 3.2.3), and using a Monte-Carlo analysis to assess
algorithm performance (Section 3.2.4). Section 3.3 ap-
plies CD techniques to the momentum telemetry, which
exhibits lasting changes when a debris strike imparts a
change in the spacecraft’s inertial angular momentum.

2. Methods for Simulation and Telemetry Processing

2.1 Spacecraft Simulation

A numerical spacecraft dynamics simulation is used to in-
vestigate a spacecraft’s response to debris strikes. The
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simulated spacecraft is configured as a rigid-body 3-
axis controlled inertially-pointing GEO satellite with four
reaction wheels (RWs). The state vector consists of
the spacecraft’s attitude and rate along with the rotation
speeds of the four reaction wheels. A Runge-Kutta fourth-
order integrator is used to integrate the equations of mo-
tion given in Equations (1), (2), and (3) [16]. Note that
Equations (2) and (3) must be solved simultaneously.
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The spacecraft’s rotation rate, ω, is the rate of the body
frame relative to an inertial frame, and is expressed in
body frame coordinates. The attitude quaternion of the
body relative to inertial is q, and Ω is an N ˆ 1 ma-
trix of wheel speeds for N reaction wheels. The external
torque applied by the debris strike is Lext while ĝsi is the
unit vector of the spin axis of the ith reaction wheel. The
transverse directions are ĝti and ĝgi, and the rGss matrix
is defined as rGss “ rĝs1...ĝsN s. The spacecraft inertia
(with reaction wheels included) is given as rIscs, and the
spin-axis inertia if each reaction wheel is Iws. An iden-
tity matrix is denoted as rINˆN s, and the applied control
torques for each reaction wheel are specified in us. These
control torques are calculated as shown in Equation (4)
to apply a desired torque, Ldes, which is calculated per
Equation (5).

us “ rGss
T prGssrGss

T q´1Ldes (4)

Note that the Modified Rodrigues Parameters (MRPs, σ)
are used as the attitude coordinate for the control law
and represent the attitude error between the current body
frame and the desired reference frame. Similarly, δω rep-
resents the difference betweenω and the desired reference
angular velocity, ωr [16].

Ldes “ Kσ ` rP sδω ´ rω̃srIscsω

´ rIscsp 9ωr ´ ω ˆ ωrq (5)

The proportional control gain on attitude error is denoted
as K, and rP s must be a positive definite matrix to guar-
antee stability via Lyapunov functions.

State noise is added to the system at each timestep in
a Gaussian random walk. Gaussian measurement noise

is added to ω and σ when calculating the control torques
and is also added to the torque command. The state is
saved throughout the simulation and then truncated to a
lower rate to represent downlinked telemetry. Gaussian
measurement noise is added to this telemetry prior to pro-
cessing. Table 1 contains the parameters used in this sim-
ulation. All noise is zero mean.

The spacecraft’s inertial angular momentum is calcu-
lated from the noisy state telemetry via

BH “ rIscsω `
N
ÿ

i“1

rBW si

»

–

IwsΩi
0
0

fi

fl (6)

NH “ rNBs BH (7)

where BH is the spacecraft angular momentum in the
body-fixed frame, rBW si is the direction cosine matrix
to go from the ith wheel’s coordinate frame to the body
frame, rNBs is the direction cosine matrix to go from the
body frame to the inertial frame, and NH is the space-
craft’s inertial angular momentum. Note that the momen-
tum telemetry does not have any noise added to it, but
it incorporates the noise from the attitude telemetry, rate
telemetry, and wheel speed telemetry.

Table 1: Parameters used in spacecraft dynamics simulation

Parameter Value Unit
S/C Inertiaxx 3000 kg.m2

S/C Inertiayy 2500 kg.m2

S/C Inertiazz 3500 kg.m2

RW Inertia 0.16 kg.m2

RW max torque 0.2 N.m
RW 1 pointing vector [1, 0, 0] -
RW 2 pointing vector [0, 1, 0] -
RW 3 pointing vector [0, 0, 1] -
RW 4 pointing vector [1, 1, 1] -
State noise in attitude σ=1E-8 -

State noise in rate σ=1E-8 rad/s
Meas. noise in attitude sim σ=1E-6 -

Meas. noise in rate sim σ=1E-6 rad/s
Noise in applied torque σ=0.001 N.m

Meas. noise in attitude tlm. σ=7E-5 -
Meas. noise in rate tlm. σ=2E-4 rad/s

Meas. noise in RW speed tlm. σ=0.25 rad/s

2.2 Digital Signal Processing Techniques

Matched filters are used on the rate and attitude teleme-
try to identify debris strikes, since the spacecraft’s dy-
namic response to the strike produces a known ’signal’ in
the telemetry. A matched filter will maximize the output
signal-to-noise ratio (SNR) for a known signal in indepen-
dent and identically distributed Gaussian noise.

A matched filter functions by taking a known wavelet
(the anticipated signal) and cross-correlating it with a se-
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quence of measurements. The filter output will increase
when the signal is present in the noise, as shown in Fig-
ure 5 [17].

To determine the threshold for detecting a debris strike
based on filter output, a receiver operating characteris-
tic (ROC) curve is developed empirically and a desired
probability of false alarm, α, is selected. The ROC curve
shows the probability of false alarm (PFA) vs. the proba-
bility of detection (PD), which is based on two probability
density functions (pdfs) (Figure 2(a)). The first pdf char-
acterizes the filter output when no debris strike is present
(i.e, the null hypothesis, Ho). The second pdf character-
izes the filter’s peak when a certain debris strike is present
(H1). Note that in order to decrease the PFA the threshold
is moved to the right, but that necessarily decreases the PD
for that strike and increases the probability of a missed de-
tection, PMD. Also, while Gaussian pdfs are shown in the
figure they will only generate accurate thresholds if the
data is Gaussian. Therefore, the distribution of the data
should always be checked and appropriate pdfs selected
before applying this method.

From the PFA and PD the ROC curves in Figure 2(b)
are developed. A desired PFA is selected, and the slope of
the ROC curve at the point where PFA “ α is the thresh-
old for the likelihood ratio test, τthresh. The likelihood ratio
test, L, is also based on the two pdfs of the filter output
where

Lpyq “ p py|H1q

p py|H0q

H1

ż
Ho

τthresh (8)

Where p py|Hiq is the probability of y given hypothesis
Hi. The resulting L(y) is compared to the threshold τthresh
from the ROC curve and the appropriate hypothesis is se-
lected. This threshold is mapped back to the filter output
by finding the point at which τthresh intersects the L(y) line
and choosing the corresponding ythresh as the filter output
threshold (Figure 2(c)).

Lpythreshq “ τthresh (9)

Note that the log of the likelihood ratio test (LLRT) is
plotted along with the log of the threshold since the num-
bers become large. Under the Neyman-Pearson Lemma,
this is the most powerful test that maximizes PD under
the constraint PFA “ α [18]. For the purposes of debris
strike detection the filter output is compared to the thresh-
old ythresh. If the filter output is above this threshold then a
strike is declared and the strike parameters are estimated.

2.3 Change Detection Techniques

The inertial angular momentum of a spacecraft is quies-
cent in the absence of external forces, but a debris strike
imparts an abrupt change in the momentum. Three tech-
niques for detecting changes in quiescent but noisy data
are applied to the spacecraft momentum: a simple sum-
mation filter, a more refined cumulative sum (CUSUM)
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(c) Log-LRT and Thresholds from Slope of ROC

Fig. 2: Development of filter thresholds via ROC curve and LRT

sequential probability ratio test (SPRT), and a Shiryaev
SPRT.

The simple summation filter detects changes by adding
the sum of all datapoints after zeroing the data to the ex-
pected average. For zero-mean noise, this sum trends to
zero over time so that a value above a certain threshold
indicates that a fault (or change) has occurred.

The CUSUM algorithm utilizes the log of the likeli-
hood ratio test from Equation (8), summed sequentially to
give the test statistic Sn [17].

Sn “
n
ÿ

k“1

lnpLpyqq (10)

The parameter Sn trends negative when the samples, as a
whole, are more likely to be from Ho than H1, and trends
positive when they are more likely from H1. This change
in drift is detected through

Wn “ Sn ´ min
0ďkăn

Sk (11)

where Wn stays close to zero while Sn trends downward,
then grows if it trends upward.

The multi-hypothesis Shiryaev SPRT is implemented
for m alternative hypotheses per Malladi and Speyer [19].
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They define

φki “ Fki ` p̃i ¨ p1´ Fkiq (12)

Where Fki is the cumulative distribution function (CDF)
expressing the probability that, at datapoint k, hypothesis
i is true. p̃i is the a priori probability that a transition to
hypothesis i occurs. Fk`1,i is computed recursively given
each new datapoint xk`1 via where fipxk`1q is the pdf of
xk`1 given hypothesis i

Fk`1,i “
φki ¨ fipxk`1q

řm
j“1 φkj ¨ fjpxk`1q

(13)

The CDFs are initialized to Foi, which is the probability
that a transition to hypothesis i has already occurred.

3. Algorithm Development

3.1 Applying Debris Strike to Simulation

The debris strike is applied to the spacecraft attitude dy-
namics simulation as a brief torque L, computed as fol-
lows. The net change in momentum imparted by the de-
bris strike is denoted asHstrike whereRd{s is the location
of the strike relative to the spacecraft center of mass, md

is the mass of the debris, and Vd{s is the velocity of the
debris relative to the spacecraft.

Hstrike “ Rd{s ˆmdVd{s (14)

Hstrike “

ż

L dt (15)

The torque, L, is applied in the simulation for one time
step, and the torque magnitude in each axis is calculated
such that the total change in momentum, Hstrike, is as
specified in the problem setup.

For convenience, the traded debris strike variables are
the direction of Hstrike and the mass of the debris. The
velocity of the debris is fixed at 8 km/s normal to Rd{s,
which is 1 m. The mass of the debris is traded to investi-
gate different magnitudes of debris strike, and is generally
between 1 and 100 mg. Note that in reality the velocity of
debris would be dependent on the debris (or micromete-
oroid) population it originates from, and the strike could
be anywhere on the spacecraft. The variables are fixed for
simplicity and clarity since this work focuses on model-
ing the effect on the spacecraft and developing detection
methodologies, not on modeling the debris population.

It is important to note that a strike which breaks through
a solar array will impart less momentum than the total rel-
ative momentum of the debris, while a strike which breaks
up on the surface will cause a plume of ejecta in the re-
verse direction which increases the imparted momentum
by a factor of two or more [20]. While these effects are
critical for accurately modeling impact events, they are
not captured in this work as the emphasis is on detection
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(c) Momentum Telemetry

Fig. 3: Response of spacecraft to simulated debris strike (10
mg at 8 km/s, 1 m from CoG, applied at t=50 s. ∆H = 0.08
N.m.s). Note similarity between rate telemetry and Sentinel-
1A telemetry (Fig. 1)

techniques, not debris population modeling. When these
techniques are applied to on-orbit telemetry and used to
estimate parameters in real debris strikes, these effects
must be accounted for.

When a debris strike is applied to a truth simulation
with no noise, the results are as shown in Figure 3. The
strike induces a rotation in the spacecraft which is cor-
rected by the attitude control system. It manifests as a
spike in the spacecraft rate, a drift and correction in the
spacecraft attitude, and a net increase spacecraft momen-
tum.

3.2 Matched Filter Development

The following sections outline the development and im-
plementation of matched filters for detecting debris strikes
using this spacecraft dynamics simulation.
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3.2.1 Develop Filters to Identify Strikes

The truth simulation is used to develop matched filters for
the spacecraft rate and attitude. To obtain the strike de-
tection wavelet the simulation is run with the largest de-
bris strike that does not saturate the RW torque. Since the
frequency of the spacecraft’s response is the same when
correcting any strike too small to saturate the RWs, this
largest wavelet envelopes the response of the spacecraft
to smaller strikes. A filter with this wavelet produces a
comparable SNR to a wavelet that matches the size of the
strike, and thus only one detection wavelet needs to be run
on each axis. A strike which saturates the wheel torques
is detectable without a closely matched wavelet due to its
large magnitude. Figure 5 shows the wavelet developed
for the spacecraft rate applied to noisy telemetry, with the
filter output showing a spike at the corresponding time.

To develop wavelets for a real spacecraft, the flatsat or
an alternate dynamics simulation can be used to develop
initial wavelets. Once the satellite is in orbit, the space-
craft’s response to other momentum-changing events can
be used to tune the wavelets. For example, a spacecraft’s
response to a slight angular momentum imparted during
small maneuver has similar characteristics to the response
to a debris strike. Figure 4 shows some telemetry from
NASA’s Solar Dynamics Observatory (SDO) recovering
its attitude after a maneuver.
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Fig. 4: Example of spacecraft correction after a small maneu-
ver imparts a slight rotation. Note similarities to simulated
debris strike response.

Note that the attitude wavelets are only run on the vec-
tor components of the error quaternion, since the scalar
component will always be close to one for small errors.
Under the small angle approximation, the scalar compo-
nent will remain near one but the vector components will
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(b) Rate Telemetry
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(c) Filter Output

Fig. 5: Example of matched filter accentuating a 50 mg debris
strike applied at t=50 s. Note that when the strike is ap-
plied the telemetry increases slightly for a few points then
decreases slightly, but it is difficult to see in the raw teleme-
try as it is beneath the noise floor. However, the filter pro-
duces a distinct spike in response.

vary linearly with φ
2 , where φ is the angle of the error in

each axis.

3.2.2 Developing Filter Thresholds

The filter thresholds are developed using a Receiver Oper-
ating Characteristic (ROC) curve. To develop this curve,
pdfs of the filter output are developed empirically. The
first pdf is the filter output with no strikes present, to char-
acterize the noise in the filter. Then a specified strike is ap-
plied to the simulation 1000 times and the filter response
to each strike is logged and used to generate a pdf of fil-
ter response to that strike. The strike size is selected such
that the center of the bell curve is in the vicinity of the
desired threshold on the no-strike pdf. To achieve this, 30
mg strikes are applied to generate the filter response for
attitude thresholds, and 40 mg strikes are applied to gen-
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erate the filter response for rate thresholds. From the two
pdfs the ROC curves are generated, and the slope of the
ROC curve at Pfa = .01% corresponds to the threshold
for the likelihood ratio test [18]. The likelihood ratio test
is applied to possible filter outputs and the filter output at
which the likelihood ratio test exceeds the threshold from
the ROC curve is selected as the filter output threshold for
strike detection. See Figure 2 for a graphical representa-
tion of this process.

3.2.3 Determining Strike Parameters

Once a debris strike is detected using the matched filter
output and associated threshold, the task is to assess the
magnitude of the debris strike. This is accomplished using
a bank of matched filter wavelets and determining which
filter wavelet shows the closest match to the telemetry.
Then the size of strike used to generate that wavelet is
selected as the estimated strike size.

Four methods are compared to determine which
wavelet is closest to the telemetry. The first method takes
the root-sum-squared error (RSSE) between the teleme-
try and each wavelet then selects the wavelet where this
is a minimum. The second takes the minimum mean-
squared error (MMSE), the third the minimum absolute
error (MAE), and the fourth the sum of the absolute
value of the error cubed (’Cubic’). The results show that
the MMSE and RSSE have identical performance, which
makes sense since the errors are penalized identically in
both methods - as a function of the square of the error.
The absolute error is penalized linearly while the fourth
method penalizes the error cubed. Across 1000 Monte-
Carlo runs with randomized debris strikes, the error in
estimated strike magnitude for each method is shown in
Table 2. Note that these errors are for accurately detected
strikes only, Section 3.2.4 discusses the overall detection
performance of the algorithm. Based on these results, the
MMSE was selected as the estimation method for the re-
mainder of this study. Figure 6 shows a wavelet bank,
telemetry with the true state overlaid, and the results of
each estimation method along with the true strike size.

Table 2: Comparing results of each estimation method

Estimation Method Mean Error Standard Dev.
Using Attitude

MMSE 1.4 mg 8.7 mg
RSSE 1.4 mg 8.7 mg
MAE 2.0 mg 10.9 mg
Cubic 1.5 mg 9.1 mg

Using Rate
MMSE -4.46 mg 13.1 mg
RSSE -4.46 mg 13.1 mg
MAE -2.95 mg 14.3 mg
Cubic -4.50 mg 13.2 mg
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(c) Results from Estimators

Fig. 6: Wavelet bank and results from running filters against a
50 mg strike at t=30 s. Minimum error is selected as most
probable strike size (58 mg). Results from each estimator
are compared.

3.2.4 Assessing Algorithm Performance

To assess the algorithm’s performance, a 1000 run Monte-
Carlo is conducted randomizing the strike time, size,
and direction. The enveloping matched filters from Sec-
tion 3.2.1 are run against the telemetry to detect strikes
per the thresholds developed in Section 3.2.2. When they
detect a strike the wavelet bank is run at that time and
the MMSE is computed. The closest-matching wavelet is
selected as the strike’s estimated size, and that result is
compared to the true size. The results, shown in Figure 7,
indicate that the attitude filter consistently detects strikes
larger than 60 mg, while the rate filter consistently detects
strikes larger than 80 mg. Both filters also detect smaller
strikes, but the percentage detected decreases with smaller
strikes. The estimated strike sizes cluster in the vicinity of
the true strike sizes, but vary by around ˘ 20 mg. A fair
number of outliers are under-predicted by more than that,
especially via the rate telemetry.
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(c) True Size vs. Estimated Size

Fig. 7: Detection results per attitude matched filter and rate
matched filter, and plot of estimated vs. true size. Non-
detected strikes and false alarms shown as zeros on each
axis.

3.3 Sequential Probability Ratio Tests (SPRTs)

Three SPRTs are implemented on the momentum teleme-
try, as the inertial momentum is fairly quiescent in the ab-
sence of external forces and a debris strike produces an
abrupt change in momentum. SPRTs compare the noisy
output data to an expected probability distribution and the
filter output increases when a prolonged deviation from
the expected output occurs. Since the momentum changes
gradually due to effects like solar radiation pressure the
parameters of the expected distribution change over time.
To apply SPRTs to the debris strike problem a sliding win-
dow filter is used. This sliding window incorporates a
’pre-window’ which is used to compute the expected dis-
tribution parameters, providing a fading estimate of the
most recent distribution parameters. In the ’post-window’
the SPRT algorithms are applied to detect changes from
the distribution characterized in the pre-window. This
causes the filters to peak at the debris strike time, when

all data in the pre-window is before the strike and all data
in the post-window is after the strike.

The simple summation filter subtracts the average of
the pre-window from the post-window data and then sums
the zeroed post-window data. When the mean of the post-
window is similar to the mean of the pre-window the filter
output, ysum, is near zero. When a change occurred at the
junction between the windows the filter output reaches a
maximum. For m datapoints,

ysum “

m
ÿ

i“1

pxi ´ µpre-windowq (16)

The CUSUM algorithm sums the likelihood ratio of
each datapoint given the µ and σ calculated from the pre-
window compared to two alternative hypotheses: a dis-
placement in ∆µ N.m.s in either the positive or negative
direction. Then the test statisticWn from Equation (11) is
used as the filter output. This also produces a maximum
at approximately the time of the strike.

The Shiryaev algorithm applies the recursive relation in
Equation (13) to each data point for j alternative hypothe-
ses, where each Hj is a displacement of n∆µ N.m.s from
the µ of the pre-window and n is a 1D array of integers
from -10 to 10. The final CDFs (Fj,end) at the end of the
post window are used as a weights to produce the follow-
ing weighted sum as the estimated change in µ based on
the entire post-window measurement sequence

∆µest “

j
ÿ

i“1

ni∆µFi,end (17)

3.3.1 Tuning Filter Parameters

The performance of each of the SPRTs is dependent on
the filter parameters such as the length of the post-window
and the choice of ∆µ. The length of the pre-window is
fixed at 200 datapoints to allow reasonable computation
times, and p̃ for the Shiryaev algorithm is fixed at 1 ˆ
10´6.

To determine appropriate filter parameters for this study
the performance of the filters is characterized while trad-
ing the length of the post-window and the magnitude of
∆µ. The desire is to maximize the SNR while maintain-
ing the ability to detect small strikes. Figure 8 shows the
CUSUM and Shiryaev filter output from 5, 10, and 20 mg
strikes while trading the post-window length and ∆µ The
mean of the peak at the strike time is divided by three
times the standard deviation of the filter noise when no
strikes are present (µstrike{3σno strike).

The results from the summation filter are not included
in the graphic because they increase consistently with in-
creasing post-window length and are unaffected by ∆µ.
Therefore, the choice of filter parameters is easy: the
largest post-window practical should be used. The length
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(a) CUSUM detecting a 5 mg strike (b) CUSUM detecting a 10 mg strike (c) CUSUM detecting a 20 mg strike

(d) Shiryaev detecting a 5 mg strike (e) Shiryaev detecting a 10 mg strike (f) Shiryaev detecting a 20 mg strike

Fig. 8: The filter parameters are traded and the SNR of the resultant filter output plotted to identify optimum filter parameters.
The CUSUM algorithm shows a peak in SNR with long post-windows and small ∆µs The ∆µ which shows the best SNR
increases with increasing strike size. The Shiryaev algorithm shows similar behavior with increasing ∆µ but the trend with
increasing window length is less consistent. The Shiryaev algorithm’s noise is highly non-Gaussian, which may contribute to
this inconsistency.

of the post-window is limited by computational time for
this study, as the strikes must be spaced apart enough that
the filter never reaches two strikes simultaneously. In real-
world telemetry, the maximum length of the filter is de-
termined by the rate of change in momentum. The filter
should be run on a set of data where the average remains
the same relative to the magnitude of the debris strikes
that are being detected.

A post-window of 180 datapoints is chosen for this
study as this allows reasonable computation time for long
Monte-Carlo runs. This is also the peak of the Shiryaev
SNR. A ∆µ of 0.1 N.m.s is chosen for the CUSUM al-
gorithm, which is the peak of the SNR for detecting a 10
mg strike and not too far below the peak for 5 mg and 20
mg strikes. Strikes larger than this have a peak at a higher
∆µ, but they are also easier to detect. For the Shiryaev
the ∆µ of the peak also increases with increasing strike
size. However, since the Shiryaev algorithm estimates the
strike size according to the discrete intervals defined by
the ∆µ array, it is not ideal to pick the ∆µ with the maxi-
mum SNR as that would result in only strikes of that size
or larger being detectable. Therefore, the Shiryaev ∆µ
array is chosen to achieve the desired granularity in strike
size estimates. A granularity of 5 mg in strike size corre-
sponds to a ∆µ of .04 N.m.s, so that is selected as the ∆µ
for the Shiryaev algorithm. As indicated on the Z-axis of

Figure 8(d-f), this still provides a satisfactory SNR.

With these parameters, the filters produce the results
shown in Figure 9 when strikes with magnitudes 5, 10,
15, and 20 mg are applied in the x-axis. As shown, the
filters struggle to detect the 5 mg strike as the output is
close to the noise floor, but the 10 mg strike and higher
are clear. The CUSUM algorithm and summation filter
both show peaks at approximately the time of the strike,
but the Shiryaev algorithm tends to have a long plateau
in the vicinity of the strike. This is because this algo-
rithm is developed to provide quick change detection, so
as soon as the end of the post window starts incorporating
the change the algorithm begins predicting that the change
has occurred, then the estimates for the change are refined,
becoming less noisy as more of the post-window includes
the change. Eventually the window passes the point of the
change, then the estimates for the change drop off as the
pre-window starts incorporating the change in its fading
assessment of the Ho parameters. Note that the simple
summation algorithm has a noticeable peak for the small-
est strike, while the CUSUM does not because it is below
its detection threshold. However, the CUSUM has an ex-
cellent SNR for the three larger strikes.
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(a) Output of simple summation filter
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(b) Output of CUSUM filter

200 400 600 800 1000
Time [s]

0

5

10

15

20

S
um

x-axis
y-axis
z-axis

ts t r ik e

200 400 600 800 1000
Time [s]

0

20

40

60

80

100

C
U

S
U

M

x-axis
y-axis
z-axis

ts t r ik e

200 400 600 800 1000
Time [s]

0

0.05

0.1

0.15

S
hi

ry
ae

v

x-axis
y-axis
z-axis

ts t r ik e

(c) Output of Shiryaev filter

Fig. 9: Output of SPRT filters with 5, 10, 15, and 20 mg strikes
applied to the x-axis

3.3.2 Developing Filter Thresholds

To develop detection thresholds the pdf of filter output is
used, similar to Section 3.2.2. However, the filter out-
put for the SPRT filters is not always Gaussian like the
matched filter output, so each algorithm’s threshold devel-
opment is tailored to accommodate its own unique output
distribution parameters. The noise distribution for the out-
put of each algorithm when no debris strikes are present
is developed using a simulation with 40,000 filtered data-
points, while the noise distribution for the output when a
strike is present is developed by applying a 10 mg strike
to the simulation 1,000 times and measuring the peak re-
sponse. Figure 10 shows the Q-Q plots of the filtered data
using distributions specific to each algorithm.

Summation Filter Output Distributions

The output of the summation filter with no debris strikes
is modeled fairly well by a Gaussian distribution. The fil-
ter’s output has slightly lighter tails than a Gaussian distri-
bution, so the thresholds developed using a Gaussian are
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Fig. 10: Q-Q plots illustrating results when fitting various dis-
tributions to filter output

somewhat conservative in terms of false alarm rate. The
peak of the filter output when a debris strike is applied is
also fairly Gaussian, so the method outlined in Section 2.2
is used to develop thresholds for strike detection using a
desired Pfa of 0.01%. Based on the ROC curve, the se-
lected threshold for the summation filter is 8.8.

CUSUM Output Distributions

The CUSUM algorithm has a one-sided output and thus
requires a one-sided pdf. However, standard one-sided
pdfs have lighter tails than the data from the CUSUM
algorithm producing more false alarms than desired. To
avoid this, a kernel distribution is used. When a debris
strike is present the variation in the peak of the CUSUM
algorithm is two-sided but skewed, so a kernel distribution
is also used for that model. The pdfs generated by these
distributions are used to develop the detection thresholds
for the CUSUM algorithm per Section 2.2. This results in
a threshold of 13.4 for the CUSUM algorithm. Note that
10 mg is slightly below the size of strike that the CUSUM
algorithm is tuned to detect, so the output is variable re-
sulting in a broad pdf.
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Shiryaev Output Distributions

The Shiryaev algorithm’s output is highly non-normal and
defied all attempts to model it with standard pdfs. This ap-
plies to both the no-strike noise parameters and the output
during debris strikes. Therefore, instead of using a poorly-
fitted and non-representative ROC curve the thresholds
are developed empirically from the no-strike noise data.
Based on this data, a threshold of 0.03 N.m.s, or 75% of
the smallest strike the algorithm is tuned to detect is se-
lected. This threshold produced a PFA of 0.4% in one
long simulation, but the threshold’s true PFA is not as-
sessed analytically due to the lack of accurate pdfs char-
acterizing the data.

3.3.3 Assessing Detection Performance

A 1,000-run Monte-Carlo is conducted to assess each al-
gorithm’s ability to detect debris strikes using the thresh-
olds developed in Section 3.3.2. The Monte-Carlo ran-
domizes the strike magnitude and direction, so it is ap-
plied on any combination of the three axes. Figure 11
shows the detection accuracy of each algorithm for vari-
ous strike sizes. These results indicate that detection per-
formance is excellent for all three algorithms for strikes
greater than 10 mg. Note that strike direction is random-
ized as well as strike magnitude, so each axis sees only a
fraction of each strike.

The detection results for the CUSUM algorithm taper
off more quickly than the Shiryaev or summation filter
results, but this is likely due to the filter being tuned to
detect strikes slightly larger than 10 mg. If the filter were
tuned to detect smaller strikes it would likely perform a
little better, as the SNR is exemplary as shown in Figure
9. However, the filter output noise would increase if it
were tuned to detect smaller strikes so the current tuning
is maintained as a conservative and reliable filter.

The Shiryaev and summation filters show an ability to
detect some strikes even in the ă 3 mg range. It is pos-
sible that some of these strikes are false alarms. In a run
with no strikes and 20,000 datapoints the Shiryaev filter
produced eight false alarms while the summation filter
produced one and the CUSUM filter produced zero. In a
run the length of this Monte-Carlo simulation there would
likely be well over 100 false alarms for Shiryaev and a
dozen or so for the summation filter, although many of
those would be hidden within the response to real strikes.

3.3.4 Estimating Strike Parameters

When a strike is detected by the simple cumulative sum
filter or the CUSUM algorithm an estimate of strike pa-
rameters is obtained by comparing the average of the pre-
window data to the average of the post-window data for
each axis. The difference in averages is used as an esti-
mate of the momentum imparted by the strike. With the
Shiryaev algorithm’s weighted sum the output of the filter

0 5 10 15 20
Strike Size [mg]

0

50

100

%
 D

et
ec

te
d 

by
 S

um

0 5 10 15 20
Strike Size [mg]

0

50

100

%
 D

et
ec

te
d 

by
 C

U
S

U
M

0 5 10 15 20
Strike Size [mg]

0

50

100

%
 D

et
ec

te
d 

by
 S

hi
ry

ae
v

(a) Detection performance of simple summation filter0 5 10 15 20
Strike Size [mg]

0

50

100

%
 D

et
ec

te
d 

by
 S

um

0 5 10 15 20
Strike Size [mg]

0

50

100

%
 D

et
ec

te
d 

by
 C

U
S

U
M

0 5 10 15 20
Strike Size [mg]

0

50

100

%
 D

et
ec

te
d 

by
 S

hi
ry

ae
v

(b) Detection performance of CUSUM filter
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(c) Detection performance of Shiryaev filter

Fig. 11: Detection performance of each filter on 1,000 random-
ized strikes

corresponds to the estimated strike size, so the filter out-
put is used as an estimate of strike parameters. Figure 12
shows the accuracy of each filter in estimating strike mag-
nitude by plotting the true vs. estimated strike size. Non-
detected strikes are shown on the x-axis. These results
show that both methods do an exemplary job of estimat-
ing strike parameters. The estimates from the Sum and
CUSUM algorithms tend to be more accurate, with nearly
all the errors within˘5 mg. The results from the Shiryaev
algorithm are good as well but have significantly more
outliers with poor estimates.

4. Results

The matched filters perform well for detecting strikes
larger than about 40 mg, and can estimate the strike size
to within around ˘ 20 mg. Matched filters offer the ad-
vantage of Gaussian filter output which allows high con-
fidence in the filter’s false alarm rate. This is key when
these methods are used to evaluate debris populations us-
ing on-orbit telemetry, since the level of confidence in the
results must be understood to evaluate whether the mea-
sured strikes are reasonable based on the modeled fluxes.

The performance of the SPRT methods run against
the inertial angular momentum telemetry is outstanding.
They are able to detect debris strikes reliably down to 10
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(a) Estimation performance of CUSUM and summation filters
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(b) Estimation performance of Shiryaev filter

Fig. 12: True size of each strike in 1,000 run Monte-Carlo com-
pared to estimated size using two estimation methods

mg and occasionally down to 3 mg or less. Their esti-
mation performance is also excellent, generally estimat-
ing strike magnitudes to within ˘5 mg. This is especially
significant because the momentum telemetry is calculated
from the noisy attitude and rate telemetry as well as noisy
wheel speed telemetry. This shows that the SPRT algo-
rithms’ ability to identify subtle changes in noisy teleme-
try is exceptional.

Each SPRT algorithm has unique strengths and weak-
nesses. The summation algorithm offers extremely low
computational requirements, and very little tuning or a
priori knowledge is required to run it effectively. Its noise
parameters are also fairly well modeled which allows the
selection of thresholds with predictable false alarm rates.
However, it has the highest SNR of any of the algorithms
which may degrade its performance on orbit when the
measurement and state noise is not necessarily Gaussian.

The CUSUM algorithm offers consistent performance
and a very low SNR, with noise parameters that, while
not Gaussian, did allow modeling via kernel distributions.
Drawbacks are that it requires design choices about the
size of strike to detect and that it has a non-trivial compu-
tational burden as the likelihood ratios must be computed
for every datapoint in every sliding window. However, for
running on telemetry as it is downlinked or running on
historical telemetry it performs very well.

The Shiryaev algorithm is challenging in its highly non-
Gaussian distribution parameters which make it difficult
to assess the false alarm rate for a given threshold. It
has very good performance but is more finicky than the
CUSUM algorithm, and it is difficult to determine the

time of the strike with reasonable accuracy. This could
be a detractor if trying to identify the effects of the strike
in multiple telemetry streams.

5. Discussion

5.1 Dependency of Results on Study Parameters

All these results are highly dependent on the noise applied
to the telemetry, and are also dependent on the spacecraft
design parameters. The noise values are loosely derived
from noise seen in on-orbit telemetry from NASA’s Solar
Dynamics Observatory, but analysis and simulation of a
specific spacecraft would have to be performed to deter-
mine a particular spacecraft’s capabilities for accurately
detecting and identifying debris strikes. Also, this study
uses the perfect simulation parameters when calculating
momentum and matched filter wavelets. In reality, there
will be discrepancies between the as-designed parameters
and the as-built parameters, and the effects of those dis-
crepancies should be characterized.

5.2 Comments on False Alarms

Note that increasing the probability of detection necessar-
ily increases the probability of false alarm by moving the
threshold (see Figure 2(a)). For this analysis thresholds
were selected which made the PFA very low compared to
the PD. Additional strikes could be detected by lowering
the thresholds, but the resultant increase in false alarms
would have to be taken into account when comparing the
results to predictions from debris models.

5.3 Potential Application: Buffering and Downlinking
Strike Telemetry

The state data from the simulation is truncated to 2 Hz
to represent downlinked telemetry. Obtaining data at a
higher rate would likely improve the ability to detect and
estimate small debris strikes, but bandwidth limitations
typically result in only necessary state of health teleme-
try being downlinked. This results in telemetry that is at
a much lower rate than is processed on-board. Since the
summation algorithm is computationally simple it could
easily be run on-board. Potentially, telemetry could be
buffered on-board and then downlinked at a higher rate if
a probable strike is detected. The higher rate telemetry
could be analyzed with the computationally intensive al-
gorithms and the transient effects on other systems could
be observed in higher rate telemetry when they might be
missed in the standard low-rate telemetry.

5.4 Challenges in Application to Real-Word Telemetry

Applying these techniques to on-orbit telemetry is a non-
trivial challenge, as the noise and events experienced by
a real spacecraft tend to trip the debris detection algo-
rithm thresholds frequently even when no strike is present.
While the theoretical inertial momentum is perfectly qui-
escent in the absence of external forces, the reality is

IAC-19.A6.3.11 Page 12 of 15



70th International Astronautical Congress (IAC), Washington D.C, United States, 21-25 October 2019.
Copyright c©2019 by the International Astronautical Federation (IAF). All rights reserved.

more variable than expected. For example, NASA’s So-
lar Dynamics Observatory sees a cyclical abrupt change
in its momentum approximately every 13 minutes, which
is consistent across years of data. This cyclical change
must be filtered out so that ’debris strikes’ are not detected
every 13 minutes. Station-keeping maneuvers and scan-
ning maneuvers also trip the strike detection thresholds,
so each spacecraft requires its own suite of algorithms to
detect events that cause fluctuations in the calculated mo-
mentum and mask the filter output during these events.
In addition to on-board events, solar radiation pressure
and space weather effects can influence the spacecraft’s
telemetry and manifest as debris strikes.

For example, Bogorad showed that an electrostatic dis-
charge (ESD) event can impart momentum to the dis-
charging object [21]. The abrupt momentum transfer
would be interpreted as a debris strike using these algo-
rithms. This is especially difficult to mitigate as a hyper-
velocity impact can also create an ESD event, so differen-
tiating an ESD event that causes momentum transfer from
a debris strike that causes ESD is a unique challenge.

Another consideration is that, since debris strikes oc-
cur rarely, significant quantities of data must be processed
to detect them. This requires a data-processing architec-
ture that is computationally efficient and capable of au-
tonomously processing far more data than many applica-
tions can accommodate, necessitating ’big data’ methods.

The fun doesn’t end when a debris strike is detected and
the parameters are estimated. As discussed in Section 2.1,
the momentum imparted by the debris to the spacecraft
is only a fraction of the momentum of the debris relative
to the spacecraft if the impactor breaks through. How-
ever, if the impactor is stopped by the structure the plume
of ejecta causes the imparted angular momentum to ex-
ceed the relative momentum of the debris by a factor of
two or more. This highlights the importance of exam-
ining other telemetry, such as solar array power output,
for indicators of the strike. If the strike’s location can be
identified it improves the ability to determine whether the
estimated strike parameters are overpredicting or under-
predicting the actual relative momentum of the debris. It
is important to note that the methods developed in this pa-
per only return the angular momentum of the strike, so a
small and fast micrometeoroid could manifest similarly to
a slower and larger piece of orbit debris.

5.5 Future Work

An ongoing study is assessing the telemetry of several of
NASA’s space science missions for debris strikes. Ap-
plying these methods to on-orbit telemetry is a critical
element in their successful development, since the noise
and events in on-orbit telemetry make it significantly more
difficult to process than simulated telemetry with perfect
Gaussian noise.

Another critical element of this development is to de-
termine the effects that the noise parameters and space-
craft parameters have on the filter’s ability to identify and
assess strikes. Each spacecraft typically has a unique in-
strument suite, and will therefore have unique noise and
response characteristics. This study shows a single design
point, and that must be extended in a trade study to under-
stand different spacecrafts’ abilities to accurately identify
and assess strikes. The filters need to be tuned for each
spacecraft based on the noise characteristics of the filter
output for that spacecraft.

In the Sentinel-1A debris strike (Figure 1) the space-
craft rate telemetry exhibited a significant amount of
’ringing’ which was probably due to the fundamental fre-
quency of the solar array being excited by the strike. A
similar phenomenon was observed in the MMS strikes.
This might obfuscate the effects of the strike as the cal-
culated spacecraft momentum would probably also ’ring’
instead of showing an abrupt change and this would have
an effect on the SPRT algorithms’ output. However, the
ringing itself might also provide an effect that could be de-
tected with the right filter. These real-world strikes show
that this study’s assumption of a rigid body spacecraft is
not entirely accurate for debris strikes on appendages. A
spring-mass-damper appendage can be added to the sim-
ulation for assessment in a future study.

An essential element of validating the data returned by
these methods is to compare the strikes predicted via de-
bris models to detected strikes. This model comparison
should take into account micrometeoroid populations as
well as debris, and the effects of the time-variance of flux
density throughout the orbit, i.e. polar regions exhibiting
higher debris fluxes for LEO spacecraft and ’rush hours’
for GEO spacecraft [22].

Additional telemetry types should be considered for
their contributions to identifying and assessing debris
strikes. In particular, if a debris strike is large enough to
change the orbit measurably the linear momentum can be
estimated, which can be combined with the angular mo-
mentum to estimate the strike location on the spacecraft.

If a significant population of debris strikes is produced
from on-orbit telemetry then machine learning algorithms
can be developed using those strikes as a training popula-
tion. Machine learning algorithms are of interest for their
ability to not only detect debris strikes in ACS telemetry
but also find subtle indicators of strikes in other telemetry
types, such as solar array power or thermal profiles.

6. Conclusions

This study develops practical and effective methods for
identifying subtle debris strikes using standard spacecraft
telemetry. It provides an innovative tool for spacecraft op-
erators to gain insight into the debris environment for their
spacecraft’s orbit. This additional insight will be critical
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to enable the increasing use of all Earth orbits by burgeon-
ing populations of space objects. Over 90% of the debris
that can harm a spacecraft is untrackable and accurately
modeling these populations is challenging, especially for
higher orbits. Leveraging active satellites as in situ de-
bris sensors with inherent ability to detect minor strikes
would revolutionize the space industry’s understanding
of the untrackable debris environment to improve debris
modeling, anomaly attribution and response, and debris
risk assessments for future missions.
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