
American Institute of
Aeronautics and Astronautics

AAS 15-773

CONTINUOUS-TIME MODELING AND
CONTROL USING LINEARIZED RELATIVE

ORBIT ELEMENTS

Trevor Bennett and Hanspeter Schaub

AAS/AIAA Astrodynamics Specialists
Conference

Vail, CO August 9–13 , 2015
AAS Publications Office, P.O. Box 28130, San Diego, CA 92198



(Preprint) AAS 15-773

CONTINUOUS-TIME MODELING AND CONTROL USING
LINEARIZED RELATIVE ORBIT ELEMENTS

Trevor Bennett∗ and Hanspeter Schaub†

Motivated by the breadth of applications for relative orbit control in formation
flying and proximity operations, a new approach to the time-varying Clohessy-
Wiltshire (CW) equations is developed. The Lagrangian Brackets variations en-
able study of invariants in the presence of perturbation accelerations. The La-
grangian Brackets are applied to the constants in the linear CW equations, called
Linearized Relative Orbit Elements or LROEs, to provide equations of motion.
The geometrical relative motion insights are investigated when drag perturbations
are included. In addition, a LROE feedback control law to transition between rela-
tive orbits is developed and numerically assessed. The manuscript concludes with
relative orbit reconfiguration optimization fundamentals and discussion of addi-
tional work.

INTRODUCTION

Relative orbit control has applications in satellite formations, rendezvous and docking, and sens-
ing missions. The relative motion between two spacecraft can be described using a variety of pa-
rameterizations and assumptions. The breadth of relative motions descriptions share fundamental
development approaches and assumptions and are grouped together under the title Relative Orbit
Elements (ROEs). Desired, in all cases, is the motion of a deputy craft relative to the chief craft.
The relative motion is obtained by a difference between the deputy and chief element sets. Often,
linear assumptions and dynamic simplifications are utilized to reduce complexity and enable ana-
lytical solutions. A few researchers have explored the variations of the element sets to produce a
applicable relative motion descriptions.? Several spacecraft missions are beginning to implement
ROE control schemes particularly on small and CubeSat missions.?, 1, 2 This manuscript classifies
and sorts existing ROEs, develops equations of motion for a new branch of the ROE family, and
provides the foundation for simplified ROE control approaches.

The ROEs can be organized in a tree structure with two major limbs: orbit element differences of
the nonlinear inertial motion and orbit element differences of the linearized motion. The set of in-
ertial motion orbit element differences encompasses the development of inertial vector differencing
in obtaining relative orbit elements. One such common formulation is the differencing of classical
orbit elements.3–5 Orbit element differencing has also manifested itself in eccentricity and incli-
nation vector separation descriptions.6 As exhibited by the PRISMA mission, inertial differencing
can remain in the Cartesian frame, especially when using Cartesian position provided by GPS.7
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Additional orbit element differences have been explored for control effectiveness.8 In general, the
inertial differencing provides greater fidelity often at the cost of computation.

The alternate limb of ROEs are elements of the linearized motion. Consider the well-know
Clohessy-Wiltshire (CW) equations derived as the analytical solution of the linearized motion about
a circular chief location.9 The CW equations provide clear geometrical insight into spacecraft rela-
tive motion as a combination of ellipse scaling and phase angles with many Low-Earth Orbit (LEO)
applications, CubeSat missions, and orbits near the Geostationary (GEO). The ROEs of the CW
equations are first extensively explored by References 10 and 11. Defining orbit elements of the lin-
earized motion prescribes the set of ROEs from the CW equations as Linearized ROEs or LROEs.
The CW ROEs are applied to continuous thrust reconfiguration maneuvers in the past, however at
the expense of requiring input shaping.12 Further exploration has begun on curvilinear and nonlinear
transformations of the linearized motion, however the formulations suffer from the same drawbacks
of described LROE control formations.13 The greater body of LROE formulations to-date is col-
lected in Reference 14 with time-varying additions included.

This study presents further expansion of relative motion control by applying variational mathe-
matics to long-standing analytical solutions to deliver simple feedback control methodologies. Mo-
tivated by the range of applicability, the 6 elements of the CW equations’ unperturbed motion are
further investigated. As described, these constants provide intuitive shaping of relative motion.
These constants may be used as a relative orbit element set if the evolution of these parameters is
developed in the presence of perturbation influences. This enables the inclusion of differential drag,
coulomb formations, and other mission relevant perturbation forces studied by other authors.15, 16

The following sections implement variation mathematics to derive the time-evolving elements, ap-
ply established control methods using the new variation form, and expand upon the insight and
applicability gained.

LINEARIZED RELATIVE ORBIT ELEMENTS (LROES)

The CW equations provide a convenient form for directly prescribing the relative orbit and are
often utilized for geometric insight. The magnitudes of the scaling and phasing terms enable direct
shaping of the relative orbit. It is the intuitive nature of these constants that motivates the following
development. Recall the CW equation form as the analytical solution to the linearized relative
motion shown in Eq. (1) with associated rates in Eq. (2).17 The constants that appear in the CW
equations are invariants of the unperturbed linearized motion. These invariants are considered as
a set of relative orbit elements (ROEs). As this set of ROEs is derived from the linearized motion
solution, the invariant vector of the CW equations is refered to as a Linearized ROE or LROE. The
Hill frame position vector components are17, 18

x(t) = A0 cos(nt+ α) + xoff (1a)

y(t) = −2A0 sin(nt+ α)− 1.5ntxoff + yoff (1b)

z(t) = B0 cos(nt+ β) (1c)

with the velocity vector expressed as

ẋ(t) = −A0n sin(nt+ α) (2a)

ẏ(t) = −2A0n cos(nt+ α)− 1.5nxoff (2b)

ż(t) = −B0n sin(nt+ β) (2c)
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Given the initial invariants of motion A0, α, B0, β, xoff, yoff, the CW equations provide a position
and velocity of the deputy spacecraft about the reference orbit. The time derivative of the CW
equations provides the relative motion rates in Eq. (2). Given both position and velocity measures,
a typical relative state vector and set of LROEs are defined in Eq (3).

s =



x
y
z
ẋ
ẏ
ż

 =

[
r
v

]
e =



A0

α
B0

β
xoff
yoff

 (3)

An inverse mapping between a typical state s and the LROEs is obtained in Eq. (4) where the current
mean motion and time of the chief spacecraft are used.

A0 =

√
9n2x2 + ẋ2 + 12nxẏ + 4ẏ2

n
(4a)

α = tan−1
(

ẋ

−3nx− 2ẏ

)
− nt (4b)

B0 =

√
n2z2 + ż2

n
(4c)

β = tan−1
(−ż
nz

)
− nt (4d)

xoff = 4x+ 2
ẏ

n
(4e)

yoff = −2
ẋ

n
+ y + (6nx+ 3ẏ)t (4f)

The inverse mapping allows the relative motion parameters to be obtained at any point in time given
the relative motion of the system as mapped from the CW Hill frame to LROE space. Consider
the CW equations in Eq. (1) and the inverse mapping in Eq. (4). If the elliptical invariant A0

or B0 are zero in Eq. (1), then the angles α and β are ambiguous and lack influence. However,
the inverse mapping introduces an inverse tangent function that is subject to singularities and the
secular term nt that must be modulo 2π for consistency. This mapping is required unless additional
logic is included or further reduced forms of the equations are used. The CW equations therefore
are unable to provide a unique solution to the Leader-Follower configuration without modification.
These singularities in the CW form motivate alternate or modified forms of the CW equations and
invariant set.

NONSINGLUAR MODIFICATION TO THE LROE SET

Slight modification to the CW equations removes the α and β ambiguity and largely preserves
the inherent insight. Proposed is a modified set of LROEs that utilizes the trigonometric expansions

A0 cos(α+ nt) = A0 cos(α) cos(nt)−A0 sin(α) sin(nt)

A0 sin(α+ nt) = A0 sin(α) cos(nt) +A0 cos(α) sin(nt)
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where new constants A1 and A2 are defined.

A1 = A0 cos(α) (6a)

A2 = A0 sin(α) (6b)

The ambiguity of the linear combination of A0 and α is removed in place of two perpendicular
scaling terms. Additional definitions of the B1 and B2 invariants of the unperturbed relative motion
are defined similarly to the A1 and A2. Using the simplifications in Eq (5) and Eq. (6), the CW
solution is rewritten into the proposed LROE form

x(t) = A1 cos(nt)−A2 sin(nt) + xoff (7a)

y(t) = −2A1 sin(nt)− 2A2 cos(nt)− 1.5ntxoff + yoff (7b)

z(t) = B1 cos(nt)−B2 sin(nt) (7c)

The time derivative of the CW equations provides the relative motion rates in Eq. (2).

ẋ(t) = −A1 sin(nt)−A2 cos(nt) (8a)

ẏ(t) = −2A1n cos(nt) + 2A2n sin(nt)− 1.5nxoff (8b)

ż(t) = −B1n sin(nt)−B2 cos(nt) (8c)

A new set of invariants are therefore defined. These invariants of the unperturbed motion are
also LROEs, as they provide direct information regarding the geometry of the relative orbit from a
linearized vector difference. The new LROE set is of all in units of distance providing additional
simplicity.

e =



A1

A2

B1

B2

xoff
yoff

 [m] (9)

The LROEs defined in Eq. (9) can be obtained at any point given Hill frame measurements or
time history through an inverse mapping. The inverse mapping for the new LROE set is defined in
Eq (10). The analytic inverse form allows Hill frame measurements to be easily mapped into LROE
information.

A1 = −(3nx+ 2ẏ) cos(nt) + ẋ sin(nt)

n
(10a)

A2 =
(3nx+ 2ẏ) sin(nt)− ẋ cos(nt)

n
(10b)

B1 = z cos(nt)− ż sin(nt)

n
(10c)

B2 = −z sin(nt)− ż cos(nt)

n
(10d)

xoff = 4x+
2ẏ

n
(10e)

yoff = −2ẋ

n
+ y + (6nx+ 3ẏ)t (10f)
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LROEs both in the traditional and nonsingular forms provide the relative motion geometry in the
absence of perturbation. Desired is the evolution of the elements when perturbations are present.
The following section derives the Lagrangian Bracket formulation used to generate the specific
LROE evolution equations.

LAGRANGIAN BRACKETS DEVELOPMENT OF LROE VARIATIONAL EQUATIONS

Of interest is the effect on the relative motion from either controlled or uncontrolled perturba-
tions. Currently, the LROEs proposed are constants of motion. However, implementation of the
Lagrangian Bracket formulation to the CW equations allows perturbation accelerations to influ-
ence the LROE values. The Lagrangian Bracket form evolves the relative motion elements when
perturbed from Keplerian orbits. The Lagrangian Bracket form, detailed in Reference 17, evolves
the invariants of motion present in a dynamical system’s analytical solution to match the nonlinear
solution at the prescribed time. Given the inverse mappings provided in Eq (4) and Eq (10), the
sensitivity matrices are computable. The invariant vector e, otherwise invariant, evolves according
to Eq. (11) where r is the position vector and ad is the disturbance acceleration.

ė = [L]−1
[
∂r

∂e

]T
ad (11)

where the Lagrangian Bracket matrix [L] is defined by

[L] =
∂s

∂e

T

[J ]
∂s

∂e
(12)

and [J ] is the symplectic matrix of necessary dimension. A full development of the Lagrangian
Bracket form is included in Reference 17.

The evolution of the invariants described by Eq. (11) enables an analytic solution to evolve to a
non-homogeneous disturbance acceleration. The analytical solution for the relative orbit described
by the CW equations is used where the considered state and invariants used in Eq. (11) are presented
in Eq. (3). The partials necessary for Eq. (12) are developed by first defining the simplifying terms

κα = nt+ α κβ = nt+ β (13)

Completing the derivation of required matrices in Eq. (11), the partial derivatives of the relative po-
sition vector with respect to the invariants is presented in Eq. (14). The result in Eq. (14) constitutes
the upper half of the the state-partials matrix where the remaining terms are left to the reader.

∂r

∂e
=

 cos(κα) −A0 sin(κα) 0 0 1 0
−2 sin(κα) −2A0 cos(κα) 0 0 −1.5nt 1

0 0 cos(κβ) −B0 sin(κβ) 0 0

 (14)

Introducing the derived partials into Eq. (12) and simplifying yields the full Lagrangian Bracket
form and inverse in Eq. (15). The sparsely populated matrices are presented in component form

5



where the skew symmetric property is required to build the full matrices.

L1,2 = −5A0n

L1,5 = −3n2t cos(κα) + 4n sin(κα)

L1,6 = 2n cos(κα)

L2,5 = A0n(4 cos(κα) + 3nt sin(κα))

L2,6 = −2A0n sin(κα)

L3,4 = −B0n

L5,6 = 3/2n

L−11,2 = −3/(A0n)

L−11,5 = −4 sin(κα)/n

L−11,6 = −8 cos(κα)/n− 6t sin(κα)

L−12,5 = −4 cos(κα)/(A0n)

L−12,6 = (8 cos(κα)− 6nt sin(κα))/(A0n)

L−13,4 = 1/(B0n)

L−15,6 = 10/n

(15)

The classical element form is therefore fully defined. The following section addresses the modi-
fied LROE set.

MODIFIED LROE LAGRANGIAN BRACKETS DEVELOPMENT

The substitution made in Eq. (7) removes the ambiguity in defining α and β for configurations
where the scaling element is zero. Following the same approach used to develop the Lagrangian
Brackets for the classical CW form, this section develops the Lagrangian Brackets for the modified
LROEs. Taking the partials of the CW state with respect to the LROEs provides the necessary
state-partials matrix with the position partials shown.

∂s

∂e
=

 cos(nt) sin(nt) 0 0 1 0
−2 sin(nt) −2 cos(nt) 0 0 −3/2nt 1

0 0 cos(nt) − sin(nt) 0 0

 (16)

Carrying out the symplectic matrix operation in Eq. 12 generates the modified LROE Lagrangian
Brackets and inverse. Again, the sparsely populated matrices, in Eq. (17), are presented in compo-
nent form noting the final matrices is also skew symmetric.

L1,2 = −5n

L1,5 = −3n2t cos(nt) + 4n sin(nt)

L1,6 = 2n cos(nt)

L2,5 = 4n cos(nt) + 3n2t sin(nt)

L2,6 = −2n sin(nt)

L3,4 = −n
L5,6 = 3/2n

L−11,2 = −3/n

L−11,5 = −4 sin(nt)/n

L−11,6 = −8 cos(nt)/n− 6t sin(nt)

L−12,5 = −4 cos(nt)/n

L−12,6 = 8 cos(nt)/n− 6t sin(nt)

L−13,4 = 1/n

L−15,6 = 10/n

(17)

Apparent in Eq 17 is that only the mean motion appears in the denominator of the inverse. Removal
of the scaling terms from the denominator in the Lagrangian Brackets removes the singularities
present in Eq. (15). The non-singular form using the modified LROEs is carried forward for the
remainder of this study. It can also be shown that the Poisson Brackets approach confirms the
Lagrangian Brackets forms presented.
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PERTURBATION EFFECTS PRESENT IN MODIFIED LROES

Inclusion of perturbation effects in the relative motion are apparent and intuitive when represented
in LROE space. A dominant perturbation for spacecraft in LEO is atmospheric drag. Consider the
influence of drag on a spacecraft defined by the drag acceleration model in Eq. (18).

r̈ = −1

2
CD

A

m
ρA‖VA‖VA (18)

The drag model constants and variables in Equation 18 utilized by this study assume equivalent
spacecraft defined by

A = 3.0 [m2]

m = 970 [kg]

ρ0 = 3.614× 10−13 [kg/m3]

r0 = (700000.0 +REarth) [m]

H = 88667.0 [m]

ρA = ρ0 exp− (r − r0) /H

VA =

 ˙rX + θ̇rY
˙rY − θ̇rX

˙rZ


where ρ0 is a reference atmospheric density, r0 is a reference radius, H is a scaling height, and r
is the position of the spacecraft. The contribution from rotation of the Earth’s atmosphere includes
the Earth spin rate in Equation 19 where t is the time in seconds past the epoch.

θ = t · 7.2921158553× 10−5 [rad] (19)

Consider the influence of the described drag model during maintenance of a planar ellipse space-
craft formation defined by the reference LROE set

er =



A1,r

A2,r

B1,r

B2,r

xoff,r
yoff,r

 =



20
0
0
0
0
0

 [m]

Drag is applied to each spacecraft in the numerical analysis initialized an equatorial circular
LEO chief with a semi-major axis of a = 7550 km. The simulated inertial state is composed of
position and velocity for both uncontrolled chief spacecraft and controlled deputy spacecraft. The
simulations are propagated for a duration of 10 chief orbits at ∆t = 0.5 seconds and drag as the
only non-Keplerian perturbation. The difference between actual and desired relative orbit is shown
in Figure 1.

Figure 1 reflects the effect of drag on relative orbit geometry. The LROE parameters shown
are extracted at each time step using the inverse mapping provided. The out-of-plane B1 and B2
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(d) yoff perturbed by drag.

Figure 1. LROE error from unperturbed in the presence of drag. Mean shown in .

parameters remain zero and are not shown. Most notable are the xoff error in Figure 1(c) and
the yoff error in Figure 1(d). The mean xoff is a non-zero constant. As expected, this shears the
relative motion apart witht the yoff trend linearly diverging from a bounded formation. The A2

component in Figure 1(b) maintains a zero mean as expected. The geometry of the ellipse in the
along-track direction, as captured by the A2 parameter, remains unchanged while the yoff grows.
The A1 parameter however exhibits a non-zero constant error.

On-going investigation uses the Lagrange Bracket relation in Eq. (11) to predict the LROE varia-
tions using perturbation effect models in the relative frame. Predictive LROE models enable relative
navigation with more realistic extensive propagation. In addition, the relative motion control is able
to account for perturbation effects. The usefulness of LROE variational equations enables both per-
turbation modelling as well as injecting a desired acceleration. The following section develops a
control scheme that injects an accleration to maintain or reconfigure a relative orbit.

LAGRANGIAN BRACKETS CONTROL DEVELOPMENT

Utilization of the input acceleration in the Lagrange Bracket form, a control law that drives the
relative motion of two satellites to a desired geometry is developed. The LROE vector e, otherwise
invariant, evolves according to Eq. (11) where r is the position vector in s and ad is the disturbance
acceleration. Leveraging Eq. (11), a desired reference evolution of the geometrical parameters in e
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can be implemented to transition from one relative orbit to another. The equations of motion for the
LROEs is defined for the control development by the simplification

ė = [B]u where [B] = [L]−1
[
∂r

∂e

]T
(20)

The form of Eq. (20) demonstrates the expected type of response to proper control influence. Noting
that the disturbance acceleration ad is included in the control law, feed forward of disturbance forces
should be possible. The matrix [B] for both classical and modified LROE sets are included in Eq. 21
and Eq. (22) respectively.

[B]classic =
1

n



− sin(α+ nt) −2 cos(α+ nt) 0
− cos(α+ nt) 1

A0
2 sin(α+ nt) 1

A0
0

0 0 − sin(β + nt)

0 0 − cos(β + nt) 1
B0

0 2 0
−2 3nt 0


(21)

[B]modified =
1

n



− sin(nt) −2 cos(nt) 0
− cos(nt) 2 sin(nt) 0

0 0 − sin(nt)
0 0 − cos(nt)
0 2 0
−2 3nt 0

 (22)

Eq. 22 demonstrates further the advantage of the nonsingular formulation where the scaling terms
do not appear in the denominator. This equation of motion enables the use of Lyapunov stability
analysis to derive a suitable control law. The LROE error measure is therefore defined.

∆e = e− er (23a)

∆ė = ė− ėr = [B](u− ur) (23b)

The time rate of the LROE error measure also allows the reference trajectory to be defined by a
LROE rate. While this capability is not yet studied, applications include prescribed relative orbit
evolution, direct circumnavigation reference trajectories, and faster than natural circumnavigation.

Psuedo-Inverse Control Methodology

Employed is Lyapunov’s direct method for obtaining a suitable control law to drive the LROEs
to reference values. The approach utilized in Reference 17 does not provide a complete stability for
a pseudo-inverse control law. However, the psuedo-inverse control is enticing due to the 6× 6 gain
matrix allowing element-specific tuning. Consider the newly proposed Lyapunov function defined
in Eq. (24) where [K] is a symmetric positive definite gain matrix.

V (∆e) =
1

2
∆eT [K]∆e (24)

The time derivative of the Lyapunov function is

V̇ (∆e) = ∆eT [K]∆ė (25)
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Inserting the error rate definition of Eq. (23) into Eq. (25) is shown in Eq. (26) equated to the
desired Lyapunov derivative form. Without loss of generality, the control vector u is assumed to
include the reference control ur. The desired symmetric negative-definite form is obtained with the
symmetric positive-definite matrix [P ].

V̇ (∆e) = ∆eT [K][B]u ⇒ − yT [P ]y (26)

The following control law is proposed

u = −([B]T [B])−1[B]T [K]∆e (27)

To prove stability, the following definitions are made. The sub-element ([B]T [B])−1 is a sym-
metric positive definite 3× 3 matrix. The additional terms are collected into the vector y.

[P ] = ([B]T [B])−1 (28a)

y = [B]T [K]∆e (28b)

The desired Lyapunov time derivative defined in Eq. (26) is only a negative semi-definite form
which guarantees only Lyapunov stability. For desired asymptotic stability, the sub-element of the
Lyapunov time derivative y must be zero only when the LROE error is zero. Since the matrix [K]
is chosen to be positive definite, the term [K]∆e is always non-zero if the error is zero. However,
due to the time variation of the B matrix, there are instantaneous points in time where y is zero.
Although the combination of [B]T [K]∆e may instantaneously go to zero, the largest invariant set
where the product remains zero for all time is where ∆e is zero at which point the control effort is
zero. Thus LaSalle’s Invariant principle delivers asymptotic stability.

The gains in the positive definite matrix [K] for the proposed control are selected via three steps.
First, expanding the ([B]T [B])−1[B]T [K] product, some terms appear as 1/t or 1/t2. The gain
terms preceding these higher order terms are set to zero for simplicity because the influence de-
pletes as time moves towards infinity. This process eliminates most of the off-diagonal terms. It
is therefore reasonable to assume a diagonal form for [K] for the remainder of this study. Second,
for a formation to be bounded or constrained to the desired drift the xoff term must be as exact as
possible. Thus, the gain for this term is set to an order of magnitude larger than the other errors in
the LROE feedback. Third, the inverse LROE mapping in Eq. (10) is sensitive to large accelerations
that switch the sign of the velocity too quickly. Inserting a mean motion multiplicative factor serves
to spread the error over an entire orbit. Inspection of Eq. (10) as well as numerical simulations
demonstrate that large shifts and significantly large gains cause an instantaneous shift in the LROEs
obtained by the inverse mapping. Such rapid shift introduce error measures orders of magnitude
larger leading to divergence. The gain developed for the LROE controller in this study is set to:

[K] = n · diag([1, 1, 1, 1, 30, 1]) (29)

The gain matrix utilized may not be optimal, however sufficient performance is obtained. Future
studies will address the gain matrix and seek dynamical system leverage in scaling the gain values.
The LROE feedback controller is fully developed and defined. The Psuedo-Inverse method devel-
oped is implemented in several relative orbit reconfigurations detailed in the following sections.
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Alternate Control Forms

The LROE form shares many similarities to the control implementation for orbit element differ-
ences. Recall that the prescribed error form is a relative orbit element difference of the linearized
motion. Capitalizing on the parallels with orbit element differences, many other control forms avail-
able from orbit element difference control literature with a few shown in Reference 17. Additional
forms may be possible, although the [B] matrix defined by the current set of LROEs leads to a zero
determinant for forms that include [B][B]T elements. The Psuedo-Inverse method derived in this
study benefits more than other forms through use of a full 6 × 6 gain matrix that provides better
element-specific tuning.

INERTIAL SIMULATION CONTROL IMPLEMENTATION

The proposed relative orbit description and associated control law are assessed using an inertial
orbit simulation solving the full nonlinear 2-body problem. The numerical analysis assumes Ke-
plerian orbits with a equitorial circular LEO chief with a semi-major axis of a = 7550 km. The
simulated inertial state is composed of position and velocity for both uncontrolled chief spacecraft
and controlled deputy spacecraft. The simulations are propagated for a duration of 10 chief orbits to
fully illustrate the near steady state behavior. Three LROE reconfigurations are considered: from a
planar ellipse to a lead-follower, from a lead-follower to the planar ellipse, and from a planar ellipse
to a circularly projected relative orbit. The three cases demonstrate the breadth of controller ability
and target specific singularities or coupling effects that render the classical CW parameterization
insufficient. Presented are the initial and final desired LROE states. Notice that no time varying
reference trajectory is prescribed for the transfer as the Lagrangian Brackets evolution provides
the natural evolution given the current LROE error. Small relative orbits are considered for this
study with two planar reconfiguration cases are produced. Both cases utilize full inertial non-linear
simulation at an integration time step of 0.5 seconds.

Planar-Elliptic to Lead-Follower

The first case considered is the planar elliptic to the lead-follower. Desired is a transition from
a zero offset 2-1 ellipse to a standoff distance in the along track direction ahead of the chief. The
initial and final LROEs for this reconfiguration case are:

e0 =



A1,0

A2,0

B1,0

B2,0

xoff,0
yoff,0

 =



20
0
0
0
0
0

 [m] er =



0
0
0
0
0
30

 [m]

The transfer between the initial and reference LROEs is achieved in greatest extent within 3
orbits of the chief. The Hill frame reconfiguration is shown in Figure 2 where the green signifies the
initial relative orbit position and the magenta signifies the target lead-follower stand-off position.
As can be seen in the Hill frame, the deputy satellite initial moves along a 2-1 ellipse as the along-
track offset is increased. Over the following orbits, the ellipse shifts with slight expansion before
contracting onto the reference point. By inspection, the size of the relative motion ellipse initially
grows prescribed by the coupling in the variational equations in the along track position.
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Figure 2. Hill frame convergence to Lead-Follower configuration.

The planar elliptic to lead-follower is a planar reconfiguration and therefore the de-coupled out-
of-plane motion remains zero. The modified LROEs time history provides additional insight into
the reconfiguration. Shown in Figure 3 are the time histories of the two scaling terms A1 and A2

as well as the along track and radial offsets. The simultaneous reconfiguration of the terms A1

and yoff provide and interesting balance in the evolution of the relative orbit. Noteably, the first
half orbit brings the xoff down and therefore the error up to sheer the deputy forward to the desired
offset. The lightly damped but magnitude restricted response in xoff is due to the large gain placed
on ∆xoff. The current selection of a ∆xoff error gain 30 times greater in magnitude than the other
errors provides sufficient control authority without exceeding±2 meters of offset.Additional tuning
of the xoff term may provide a range of performance with the limits of divergence if the gain is
zero and no control authority if the gain is infinite. The combination of the scaling terms provides
a noticeable effect in the Hill farme representation. Referring back to Figure 2, the relative ellipse
appears to rotate. This effect is attributed to the collective variation in A1 and A2 after the transition
in offset.

A logarithmic study of the LROE error shows the convergence behavior of the implemented con-
trol. Around the completion of 3 orbits, the controller is considered within sufficient accuracy of the
reference location with additional convergence occurring over the following orbits. The logarithmic
error for the LROEs is shown in Figure 4. As claimed, the majority of the error is reduced after
completion of 3 orbits. The humped variation in the A1 and A2 parameters corresponds directly
to the half orbit period. This error hump effect is due to the sine and cosine functions in the in-
verse mapping of Eq (10). As the point moves through a true zero for either sine or cosine, the
resulting scaling term decreases towards zero. The offset terms, once the scaling term error has
been removed, tend as a sustained decrease in error towards the simulation. The errors presented
in Figure 4 are not expected to go to zero. The LROE formulation is a first order mapping with
some error incurred by the inverse mapping. Thus the error obtained is near the best possible given
the formulation and mapping equations. The chatter seen supports use of a dead-band control. It
is believed that using a dead-band will prevent inverse mapping errors driving control acceleration
once it is nearly converged.

The Hill frame control effort to produce the desired reconfiguration is shown in Figure 5. The
top plot shows the first half of the reconfiguration where the bottom plot shows the logarithmic
control effort. As can be seen in Figure 5, the primary control effort is in the intial radial direction,
X̂ . This is expected because the yoff is controlled through the drift incurred by an xoff and the A1

scaling term is most dramatically reduced by the Hill x-direction acceleration. The slight y-direction
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Figure 3. LROE error for planar ellipse to lead-follower.

acceleration is present with the direct impact requiring further study. The logarithmic control effort
suggests that the reconfiguration is primarily complete following the completion of the third orbit.
The control gains assume a constant value that may be in part to the linearization error present in the
LROE error formulation. The dramatic decrease does provide confidence that the controller does
provide converged behavior.

The LROE control approach successfully reconfigures the relative orbit from a planar elliptic
relative orbit to a lead-follower configuration. Otherwise infeasible with the classic CW form, the
modified LROE form provides no singularities in the transfer space. A different control effort may
be achieved if the initial position was described by a LROE of A2 6= 0. Further, some greater Hill
y-direction thrusting might be present. This concept is explored in greater detail in the optimal
transfer section and will be largely addressed by future work.

Lead-Follower to Planar-Elliptic

The second case considered is the lead-follower to the planar elliptic. Desired is the transition
from a yoff 6= 0 to a 2-1 ellipse providing the inverse transfer of the first case. The initial and final
LROEs for this reconfiguration case are:

e0 =
[

0 0 0 0 0 30
]T

[m] er =
[

20 0 0 0 0 0
]T

[m]
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Figure 4. Logarithmic LROE error for planar ellipse to lead-follower.

The transfer between the initial and reference LROEs is achieve in greatest extent within 3 orbits
of the chief. The Hill frame reconfiguration is shown in Figure 6 where the green signifies the
initial standoff position and the magenta signifies the target end position on the prescribed 2-1
ellipse. As can be seen in Figure 6, the deputy initially shifts the along track offset back towards the
desired zero offset as the relative orbit scaling term is driven to a slightly decreased value. Once the
controller moves the along-track error into the vicinity of zero, the controller drives the scaling term
towards the increased value required for the 2-1 relative ellipse. The darker blue layered 2-1 ellipse
demonstrates that following the third orbit, the deputy does remain on the prescribed 2-1 ellipse.
The LROE errors for the lead-follower to planar elliptic case are presented in Figure 7.

Similar to the previous reconfiguration, the lead-follower to planar elliptic case shows a majority
of the convergence within the first 3 orbits. As can be seen by Figure 7(a) and Figure 7(b), the first
orbit is consumed by the yoff correction so the error grows. The A1 error then decreases rapidly as
the size of the ellipse expands. However, the error in theA2 scaling term is present due to the inverse
mapping coupling with the final corrections to the yoff. As in the previous case, the magnitude of
the radial offset is restricted by the high gain value place on ∆xoff.

The greatest insight gained from the LROE errors in Figure 7 are that the evolution is the negative
of the evolution in the planar elliptic to lead-follower shown in Figure 3. A strongly supported
conclusion is that the trajectory between two relative orbits follows the same evolution of LROEs
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Figure 6. Hill frame convergence to planar ellipse configuration.

15



Time [Orbits]

A
1 e

rr
o
r
[m

]

0 5 10
−30

−20

−10

0

10

(a) A1 Parameter Error

Time [Orbits]

A
2 e

rr
o
r
[m

]

0 5 10
−10

0

10

20

(b) A2 Parameter Error

Time [Orbits]

x
off

e
rr
o
r
[m

]

0 5 10
−2

−1

0

1

2

(c) xoff Parameter Error

Time [Orbits]

y
off

e
rr
o
r
[m

]

0 5 10
−10

0

10

20

30

(d) yoff Parameter Error

Figure 7. LROE error for lead-follower to planar ellipse.

in both the forward and reverse reconfiguration. Such consistent evolution between two relative
orbits is inherent in the Lagrange Bracket formulation. This method then suggests that optimal
reconfigurations may be obtained as a parameter sweep. This is addressed further in the optimization
discussion in a later section.

Impressively, the LROE feedback controller generates suitable trajectories between the lead-
follower and planar elliptic orbits. Analysis of both Figure 6 and Figure 2 reveal that the along-
track offset is first corrected before the ellipse scaling factor A1. Further analysis of the Lagrangian
Brackets should reveal a greater sensitivity to the along-track position and the radial offset influence
than the elliptic scaling factors.

OPTIMAL TRANSITIONS BETWEEN RELATIVE ORBITS

Given the analysis presented in this study, the continuous control provides a unique control law
that leverages Lagrangian Brackets invariant evolution and the insight of LROE sets to develop the
trajectory. In comparison, using a cartesian control law, which requires a reference trajectory to be
defined, may not leverage the same dynamics benefit inherent in the LROE method. Capitalizing on
this inherent use of dynamics the question of optimal transfers follows. Desired is an understanding
of optimal reconfigurations using the 6 initial LROEs and the desired final LROE set. Returning to
the observation that the evolution from elliptic to lead-follower and lead-follower to elliptic LROE
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evolutions only differ by a sign, optimal transfers between orbit types may be resolved through
parameter sweeps as the forward and reverse transfer are identical. That is, selecting an alternate
initial time on the same initial orbit to define the initial LROEs may provide a more fuel optimal
control.

The Lagrangian Brackets evolution provides the natural evolution given the current LROE error
and therefore constitutes the open loop control implementation.Therefore, the objective of creating
a open-loop control is demonstrated by the simple Lagrangian Bracket form. In the context of
optimal reconfigurations a sampling of open loop trajectories, or more specifically an analysis of
the Lagrangian Bracket form, may reveal desired open loop reconfigurations that are better. Initial
investigation reveals the opportunity and availability of optimal reconfiguration in LROE space.
Following is an initial example of optimal reconfiguration as applied to a deputy in a relative planar
ellipse reconfiguring to a circularly projected relative orbit.

Planar-Elliptic to Circularly-Projected

The out-of-plane LROEs are now considered whereby an initial error in the scaling term B1 is
introduced. The initial and reference LROE sets for the nominal case are

e0 =
[

20 0 0 0 0 0
]T

[m] er =
[

20 0 40 0 0 0
]T

[m]

The Hill frame position evolution with the implemented control is shown in Figure 8(a) with the
initial point shown in green and the LROE prescribed position at the end of simulation shown in
magenta. The relative orbit completes the primary plane change around the completion of one orbit.
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Figure 8. Reconfiguration between planar ellipse and circularly projected.

Consider the transfer shown in Figure 8(a) as one of many possible reconfigurations between the
planar ellipse and a circularly projected orbit. Suppose that a family of reconfigurations between the
planar and circularly projected are compared in acceleration requirement to distill possible optimal
reconfigurations. Taking the condition shown in Figure 8(a) as the (1,1) case, Figure 8(b) sweeps a
course grid of available transfers. The starting case number corresponds to a clockwise phased initial
LROE set around the planar ellipse. The end case number corresponds to a clockwise phased end
LROE set around the circularly projected orbit. Visible in Figure 8(b) is a substantial trough along
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the diagonal. This corresponds to a matched initial and final phase of the LROE sets. As expected,
maintaining the phase is the most fuel optimal approach. Further inspection demonstrates additional
local minima along the matched phase trough. The two instances shown correspond to the ciruclarly
projected orbit piercing the plane. Consistent with the classical Keplerian orbit elements, it is best to
perform a plane change maneuver at the ascending and descending nodes, or plane crossings. The
demonstration of this fuel optimality in the LROE set highlights the gemoterical intuition available
and the opportunity for complete study into optimal transfers within LROE space. On-going work
is expanding the optimality study throughout the entire LROE space to deliver broader optimal
reconfiguration claims.

CONCLUSIONS

The modified LROE formulation derived from the classical CW equations and a feedback con-
troller enables reconfiguration between relative orbits defined by LROE sets. The modified LROE
formulation utilizes the Lagrangian Bracket evolution of invariant sets in the presence of accelera-
tions to map relative orbit error into control accelarations. Three examples of the modified LROE
controller is shown demonstrating a variety of available manuevers with around a circular chief.
Also considered is the effect of perturbations to the LROE control implementation demonstrating
that feed-forward may be possible. The patterned evolution of the relative orbit when using a mod-
ified LROE controller demonstrates the geometric insight of continuous acceleration relative orbit
configuration.

In general, a new relative orbit feedback control law is developed and successfully tested in an
inertial simulation. The control effort presented in the primary cases is under the thrusting magni-
tude of an ion thruster on approximately an 1000 kg spacecraft. Therefore the control magnitudes
prescribed are feasible for continuous thrusting relative orbit reconfiguration. More simple relative
configuration transfer planning may be possible through implementation of the presented LROE
method. One limitation of the presented results is that the fundamental CW equations which give
rise to the LROEs is a linear approximation of the motion. Therefore, the validity of the LROE
approach is limited to maximum geometry dimensions less than a kilometer for negligible lineariza-
tion error. Geometry greater than a kilometer begins to exceed the linearization assumptions used
to develop the CW equations.

The interesting results presented suggest that both optimization and navigation using LROE sets
are possible. Additional study will investigate more global fuel optimal claims when using LROE
sets. Another potential variation of the presented control law is to develop an impulsive control
strategy similar to the orbit element impulsive control strategy that is able to compute a series of
impulse maneuvers to transition between relative orbits. This too would provide additional methods
for creating relative motion reconfigurations. Use of LROE sets may also enable relative navi-
gation schemes for rapid and/or course estimation of relative motion. There also exist alternate
analytic forms of the CW equations that utilize a curvilinear representation to reduce the cartesian
linearization error for geometries greater than 1 kilometer. The remaining challenge is characteriz-
ing disturbances and accelerations in curvilinear space. The presented study provides groundwork
for future applications of the concepts described.
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