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Circumnavigation relative motion is considered for application such as inspecting
a space object for damage, or characterizing space debris before engaging a re-
mediation operation. Faster-than-natural circumnavigation is a control method in
which the deputy spacecraft is advanced ahead of the natural Keplerian relative
motion. Proposed is a state transition matrix method of generating a discrete way
point guidance solution for faster-than natural circumnavigation. The state transi-
tion matrix methodology is applied to both circular and elliptical chief orbits. For
the circular chief case, natural relative trajectories are planar in nature. With the
faster-than-natural circumnavigation, this work illustrates how the required rela-
tive trajectories become three-dimensional curves. This methodology allows for
closed-form impulsive control solutions and the associated fuel cost. The proposed
method is validate through numerical simulation.

INTRODUCTION

Circumnavigation orbits are useful for inspection type missions such as searching for meteorite or
space debris damage, to engage in servicing missions, or even to perform the proposed electrostatic
tugging and formations.1 The limitation of these circumnavigation relative orbits is that the natural
solutions require one orbit period to complete. Further, the natural solutions may not provide the
way points needed by the deputy satellite to get a good view of the chief satellite. This study utilizes
the state transition matrix formulation to perform faster-than-natural circumnavigation via a set of
pre-defined way-points. Several authors have explored the faster-than-natural relative orbits provid-
ing initial insight into continuous thrusting solutions. Reference 2 investigates using a bi-elliptic
method to find a 2-impulse sequence to join 2 natural elliptic relative motions, yielding a faster-
than-natural circumnavigation. Straight uses the relative motion State Transition Matrix (STM) for
the circular chief case to develop impulsive control solutions to yield a non-natural circular cir-
cumnavigation solution.3 Here a general set of way-points can be applied, and the STM is used to
determine the the required changes in velocity at each way-point. Reference 4 also uses the circular
chief STM to investigate using a series of way-points to perform a faster-than-natural approach to
another space object. STM methods that scale to elliptic orbits are investigated in Reference 5. More
recently, Dannemiller discusses the general STM approach to planning a multi-maneuver relative
trajectory in Reference 6.

Faster-than-natural circumnavigation presents additional flexibility in the design of formation fly-
ing relative orbits. The STM-based approach provides opportunities for discrete guidance solutions
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with impulsive maneuvers. Consider two spacecraft in formation in the rotating local vertical local
horizontal (LVLH) frame defined by Figure 1. Given the Keplerian orbits of the two spacecraft,

and the orbit element description will be used. The spacecraft formation
flying nomenclature used in this chapter is as follows. The simplest type of
spacecraft formation flying geometry is the leader-follower type of formation
flying shown in Fig. 14.1. Here the two spacecraft are essentially in identical
orbits, but are separated only by having different anomalies. If this orbit is cir-
cular, then the spacecraft separation will remain fixed because both vehicles
are always moving at the same orbital speed. If the orbit is elliptic, then the
spacecraft separation will contract and expand, depending on whether the
formation is approaching the orbit apoapsis or periapsis.

The satellite about which all other satellite motions are referenced is
called the chief satellite. The remaining satellites, referred to as the deputy
satellites, are to fly in formation with the chief. Note that it is not necessary
that the chief position actually be occupied by a physical satellite. Sometimes
this chief position is simply used as an orbiting reference point about which
the deputy satellites orbit.

The inertial chief position is expressed through the vector rc(t), while the
deputy satellite position is given by rd(t). To express how the relative orbit
geometry is seen by the chief, we introduce the Hill coordinate frame [2].
Its origin is at the chief satellite position and its orientation is given by the
vector triad {ôr , ôu, ôh} shown in Figs. 14.1 and 14.2. The vector ôr is in
the orbit radius direction, while ôh is parallel to the orbit momentum
vector in the orbit normal direction. The vector ôu then completes the right-
hand coordinates system. Mathematically, these O frame orientation vectors
are expressed as

ôr ¼
rc

rc
(14:1a)

ôu ¼ ôh " ôr (14:1b)

ôh ¼
h
h

(14:1c)
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Fig. 14.1 Illustration of a leader–follower type of a two-spacecraft formation.
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Figure 1. Local Vertical Local Horizontal rotating frame for formation flying.

the relative orbit of the deputy spacecraft remains constant and bounded. This paper investigates
a method of advancing the deputy spacecraft to discrete points along the natural relative orbit in a
faster time than otherwise feasible with the natural uncontrolled propagation of Keplerian motion.
The concept of faster-than-natural circumnavigation is illustrated by the forced trajectory shown in
Figure 2. The natural relative motion for the deputy spacecraft, under the assumption of Keplerian
orbits, follows the dotted red trajectory around the chief spacecraft. Applying precise �v maneu-
vers at way points, shown as blue points, enables the deputy spacecraft to reach the subsequent way
point at a prescribed time denoted as ti earlier than otherwise possible.
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Figure 2. Illustration of Relative Motion Way Points

In this study the Keplerian relative motion STM is developed based on the orbit element differ-
ence approach. Alfriend and Gim develop the relative motion STM in Reference 7 assuming both
point-mass and J

2

gravitational influences, even if eccentric chief motions are considered. In this
paper, as control solutions implement non-natural relative trajectories, the impact of the J

2

pertur-
bation is assumed to be minimal between two impulsive control burns. The simplified Gim/Alfriend
STM is useful in developing analytical fuel consumption predictions, even for elliptic chief cases.
Of interest is how does a non-natural relative orbit period impact the relative trajectory shape as the
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circumnavigation time is sped up or down, while requiring the satellite still visit targeted way-points
of naturally occurring relative trajectory. The naturally occurring relative orbits are planar, and the
impact of changing the way-point visit time on the relative trajectory is investigated. Further, the
approach scales to elliptic chief motions as well. While closed form solutions are feasible, their
analytical expressions can be rather lengthly. The faster-than-natural way-point navigation is ex-
plored in simple 2 way-point scenario with a highly eccentric chief. The impact of the eccentric
chief motion on the inter-way-point trajectories is investigated. Numerical simulations are used to
demonstrate the resulting solutions.

CIRCUMNAVIGATION WAY POINTS

This study examines how a deputy spacecraft performs relative orbit maneuvers such that result-
ing circumnavigation is either faster or slower than the natural relative orbit period. The maneuver
sequence is setup through a series of Nwp way points relative to the chief satellite as shown in Fig-
ure 2. The illustration shows a 2D in-plane relative trajectory. However, these way points can also
contain out of plane z components. For simplicity in this study, even time segments are assumed
between way points. If P =

2⇡
n is the natural relative motion period, then T  P is the to cir-

cumnavigate through these way points. The time between way points is distributed evenly such
that

Ti =

T

Nwp
(1)

The time ti for circular chief motion represents and intuitive geometrical division of the relative
orbit. As is seen in later sections, equal segment time does not necessarily correspond to equal
geometrical spacing. As desired, the deputy circumnavigation time will be less than the natural
period and thus the speed up factor 0 < s < 1 is defined by

s =

P

T

(2)

The speed up factor provides the natural motion for s = 1, slower than natural for s < 1, and faster
than natural for s > 1. The sped up time between waypoints is expressed in terms of the chief mean
orbital motion n and the number of way points Nwp as

Ti =

2⇡

nNwps
(3)

As expected, increasing the speed up factor requires more �V . Also, the spacing of waypoints
also impacts the �V budget. The influence from both the speed up and number of waypoints is
addressed in later sections.

The following section presents the circular chief state transition matrix (STM) for the deputy
spacecraft between way point maneuvers. Utilizing �Vi maneuvers between STM coast periods
enables the faster than natural circumnavigation. The uniform spacing of the way points simplifies
the following analysis, however the methodology is applicable to non-uniform way point spacing.
The methodology is also expanded to an elliptical chief case presented in later sections.

RELATIVE MOTION STATE TRANSITION MATRIX

Desired is an analytic analysis of the waypoint propagation and �V budget given the prescrived
relative orbit and speed up factor. The motion can be propagated through the use of a state transition
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matrix that maps the current deputy position forward in time assuming Keplerian motion. Required
is the relative position and velocity state of the deputy at the respective waypoints given the sequence
of maneuvers. Let the relative motion state vector be

X =

⇥
x y z ẋ ẏ ż

⇤T
=

⇥
r

T
v

T
⇤T (4)

The state transition matrix [�

X

(t, t

0

)] will map initial X(t

0

) = X

0

states into the current states
X(t) at time t through

X(t) = [�

X

(t, t

0

)]X

0

(5)

An elegant solution to the STM is available using orbit elements. Consider the semi-non-singular
orbit element set8

oe = {a, ✓, i, q

1

, q

2

, ⌦} (6)

where a is the semi-major axes, ✓ = ! + f is the true latitude with the argument of periapse !,
true anomaly f , the inclination angle i. Defining q

1

= e cos ! and q

2

= e sin ! as measures of
eccentricity e and argument of periapses with ⌦ as the ascending node angle completes the set.

In formation flying applications, the relative motion is small compared to the orbit radii and the
linearized mapping [A(oe(t))] provides a convenient method to map orbit element differences into
the Cartesian LVLH frame position and velocity counter parts.8–10 The orbit element difference
�oe(t) is obtained by differencing the deputy and chief orbit element sets with linearization about
the chief element set.

X(t) = [A(oe(t))]�oe(t) (7a)
X

0

= [A(oe(t

0

))]�oe

0

(7b)

The orbit element description has the benefit that assuming Keplerian motion all elements are con-
stant, except for the anomaly measure (✓ in the given oe set). Using the linearized mapping in
Eq. (7), the state transition matrix [�

X

] can be found using:

[�

X

(t, t

0

)] = [A(oe(t))][��oe(t, t0)][A(oe(t

0

))]

�1 (8)

The matrix [A(oe(t))] is defined in parts by [8, p. 689-690]

[A(oe(t))] =


A

11

A

12

A

21

A

22

�
(9a)

[A

11

] =

2

4
R/a VRR/VT 0

0 R 0

0 0 Rs✓

3

5 (9b)

[A

12

] =

2

4
�R(2aq

1

+ Rc✓)/p �R(2aq

2

+ Rs✓)/p 0

0 0 Rci
0 0 �Rc✓si

3

5 (9c)

[A

21

] =

2

4
�VR/(2a) (1/R � 1/p)h 0

�3VT /(2a) �VR 0

0 0 VT c✓ + VRs✓

3

5 (9d)

[A

22

] =

2

4
(VRaq

1

+ hs✓)/p (VRaq

2

� hc✓)/p 0

(3VTaq

1

+ 2hc✓)/p (3VTaq

2

+ 2hs✓)/p VRci
0 0 (VT s✓ � VRc✓)si

3

5 (9e)
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where the short-hand notation c✓ = cos ✓ and s✓ = sin ✓ is used, along with the definitions

R = r =

a(1 � q

2

1

� q

2

2

)

1 + q

1

c✓ + q

2

s✓
(10a)

VR =

h

p

(q

1

s✓ � q

2

c✓) (10b)

VT =

h

p

(1 + q

1

c✓ + q

2

s✓) (10c)

p = a(1 � e

2

) (10d)
h =

p
µp (10e)

Here the orbit has semi-major axis a and eccentricity e about the central body with gravitational
parameter µ . The inverse of [A(oe(t))] is taken to obtain [A(oe(t))]

�1 with analytic solution in
Reference 10.

The orbit element description has the benefit of assuming Keplerian motion with all elements are
constant except for the anomaly measure (✓ in the given oe set). Thus, the state transition matrix for
the differential orbit elements �oe assumes the simple form [8, p. 697]

[��oe(t, t0)] =

2

6666664

1 0 0 0 0 0

A B 0 C

1

C

2

0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7777775
(11)

where

A = �3

2

a⌘

r

2

nt (12a)

B =

⇣
r

0

r

⌘
2

(12b)

C

1

=

1

r

2

⌘

2

⇣
rs✓(r + a(1 � q

2

1

)) � r

0

s✓
0

(r

0

+ a(1 � q

2

1

)) + aq

1

q

2

(rc✓ � r

0

c✓
0

)

+ q

2

(r � r

0

)(a + r + r

0

)

⌘ (12c)

C

2

=

1

r

2

⌘

2

⇣
� rc✓(r + a(1 � q

2

2

)) + r

0

c✓
0

(r

0

+ a(1 � q

2

2

)) � aq

1

q

2

(rs✓ � r

0

s✓
0

)

� q

1

(r � r

0

)(a + r + r

0

)

⌘ (12d)

using the following definitions in terms of oe:

⌘ =

q
1 � q

2

1

� q

2

2

(13)

r =

a⌘

2

1 + q

1

cos ✓ + q

2

sin ✓

(14)

r

0

=

a⌘

2

1 + q

1

cos ✓

0

+ q

2

sin ✓

0

(15)
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Note that this solution to [��oe] assumes that ✓(t) is found separately by solving Kepler’s equation.
For circular chief motion, the implementation of Kepler’s equation reduces simply such that the
change in time is the change in angle by mean motion. The more complicated inclusion of time
of flight is discussed in the specific derivation of the elliptical chief motion. Therefore, the state
transition matrix [�

X

] can be found using

[�

X

(t, t

0

)] = [A(t)][��oe(t, t0)][A(t

0

)]

�1 (16)

Using the linearized mapping in Eq. (7) and extensive algebraic simplification of Eq. (8) provides
the state transition matrix for general spacecraft motion. This methodology applies generally to
Keplerian linearized relative motion. The only restriction to the presented methodology is that the
inclination angle must be non-zero, i 6= 0. However, this constraint is irrelevant for circular chief
relative motion and the planar relative motion discussed in the elliptical chief development.

Provided the analytic form of the state transition matrix, we can solve for the next waypoint
position ri+1

in terms of the current waypoint position ri and the corresponding departure velocity
v

+

i using impulsive burns.

ri+1

= [�

X,11(ti+1

, ti)]ri + [�

X,12(ti+1

, ti)]v
+

i (17)

Given the ri and ri+1

waypoint information, this can be solved for the current waypoint desired
open-loop departure velocity v

+

i using

v

+

i = [�

X,12(ti+1

, ti)]
�1

(ri+1

� [�

X,11(ti+1

, ti)]ri) (18)

where [�

X,12(ti+1

, ti)]
�1 maps the position error back to the present state. Applying the impulsive

burn, the expected arrival velocity at the next way point is given by

v

�
i+1

= [�

X,21(ti+1

, ti)]ri + [�

X,22(ti+1

, ti)]v
+

i (19)

Thus, the open-loop burn �vi at the i

th way point is given by

�vi = v

+

i � v

�
i (20)

with the total �V budget as the sum of all waypoint burns. Considered in the following sections are
three implementations of the proposed methodology. First presented is the circular chief case with
both 4 and 2 waypoint solutions. Following is the elliptic chief case results using two waypoints.

CIRCULAR CHIEF CIRCUMNAVIGATION

Of interest are relative orbits around a circular chief. Significant simplification of Eq. (8) is
possible using r ! a, r

0

! a, and with zero eccentricity q

1

! 0, and q

2

! 0. The resulting STM
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for linearized motion around a circular chief is11

[�

X

] =


�

X,11 �

X,12

�

X,21 �

X,22

�
(21a)

[�

X,11] =

2

4
4 � 3 cos(nt) 0 0

6(sin(nt) � nt) 1 0

0 0 cos(nt)

3

5 (21b)

[�

X,12] =

2

64

sin(nt)
n

2(1�cos(nt))
n 0

�2(1�cos(nt))
n

4 sin(nt)
n � 3t 0

0 0

sin(nt)
n

3

75 (21c)

[�

X,21] =

2

4
3n sin(nt) 0 0

�6n(1 � cos(nt)) 0 0

0 0 �n sin(nt)

3

5 (21d)

[�

X,22] =

2

4
cos(nt) 2 sin(nt) 0

�2 sin(nt) 4 cos(nt) � 3 0

0 0 cos(nt)

3

5 (21e)

Recall that in the circular chief case, the change in anomaly angle is �f = �M = nt. The
change in angle is easily obtained from Kepler’s equation for any point-to-point state transition in a
circular orbit. Therefore the simplification �f = nt = ↵ is employed enabling any point-to-point
transition. The constant [�

X,ij ] state transition sub-matrices are then simplified to

[�

X,11] =

2

4
4 � 3 cos(↵) 0 0

6(sin(↵) � ↵) 1 0

0 0 cos(↵)

3

5 (22a)

[�

X,12] =

2

64

sin(↵)
n

2(1�cos(↵))
n 0

�2(1�cos(↵))
n

4 sin(↵)
n � 3↵

n 0

0 0

sin(↵)
n

3

75 (22b)

[�

X,21] =

2

4
3n sin(↵) 0 0

�6n(1 � cos(↵)) 0 0

0 0 �n sin(↵)

3

5 (22c)

[�

X,22] =

2

4
cos(↵) 2 sin(↵) 0

�2 sin(↵) 4 cos(↵) � 3 0

0 0 cos(↵)

3

5 (22d)

The following algorithm makes use of the inverse of [�

X,12]. The analytical inverse solution is
given as

[�

X,12]
�1

=

1



2

4
n(3↵ � 4 sin ↵) 2n(1 � cos ↵) 0

�2n(1 � cos ↵) �n sin ↵ 0

0 0 n csc ↵

3

5 (23)

with
 = 8 cos ↵ + 3↵ sin ↵ � 8 (24)

The analytic form for the open loop �v enables fuel and time cost analysis and enables parameter
tuning. Visualization of these results is presented in the following sections.
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SIMULATED 4 WAYPOINT STUDY

Simulation of the open-loop �v computation provides visualization of the faster-than-natural
circumnavigation concept. Consider the circular chief case where Nwp = 4 with A

0

> 0 and
B

0

> 0. In the current study the waypoints are assumed to have even temporal spacing throughout
the maneuver. The maneuver time Ti between waypoints is given in Eq. (3). Assuming a general
number Nwp of waypoints leads to

t = Ti =

1

n

2⇡

Nwps| {z }
↵

=

↵

n

(25)

For the specific case where Nwp = 4, then

↵ =

⇡

2s

(26)

The motion between the waypoints is computed using the STM mapping

X(t) = [�

X

(t, ti)]X(ti) 8 ti < t < ti+1

(27)

The faster than natural circumnavigation study focuses on the open-loop impulsive burns where
Eq. (5) is also used to generate the reference motion. The presented form in Eq. (27) allows for any
reference motion to be prescribed from any set of initial relative orbit conditions. This form is also
employed in the elliptic chief case.

A variety of relative orbits are available for study. Considered here is a generic 2-1 planar ellipse
with an equivalent radial and normal component magnitude. The mean motion of the chief is fixed
at n = 0.0007 rad/s. The considered 4 waypoint positions are given in sequence by

r(t

0

) = �2A

0

ˆ

o✓ (28a)
r(t

1

) = �A

0

ˆ

or � B

0

ˆ

oh (28b)
r(t

2

) = +2A

0

ˆ

o✓ (28c)
r(t

3

) = A

0

ˆ

or + B

0

ˆ

oh (28d)
r(t

4

) = �2A

0

ˆ

o✓ (28e)

The prescribed points reside on the nominal trajectory. Enforced are the endpoint velocities to start
from and end on the nominal relative orbit.

v(t

�
0

) = v(t

+

0

) = �nA

0

ˆ

or � nB

0

ˆ

oh (29)

The “-” super-script indicates the Hill frame velocity prior to a burn, and the “+” super-script indi-
cates the post-burn Hill frame velocity.

Provided an analytical expression for the STM in Eq. (22), desired is the total �V required to
perform a particular faster-than-natural circumnavigation. To simplify the following descriptions,
the two parameter definitions are introduced

�

1

= 1 � sin ↵ � cos ↵ (30a)
�

2

= 1 + sin ↵ � cos ↵ (30b)
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Time �vi · ˆ

or �vi · ˆ

o✓ �vi · ˆ

oh

t

0

A0n
 (3↵ sin(↵) � 3↵ � 4�

1

)

2A0n�1
 �B

0

n csc ↵

t

1

2A0n
 (4�

1

+ 3↵ cos ↵) 0 2B

0

n cot ↵

t

2

0 �4A0n�1
 0

t

3

�2A0n
 (4�

1

+ 3↵ cos ↵) 0 �2B

0

n cot ↵

t

4

A0n
 (3↵ sin(↵) � 3↵ � 4�

1

)

2A0n�1
 B

0

n csc ↵

Table 1. Analytical �vi Burn Solution for a 4-Waypoint Circumnavigation Maneuver

The analytical prediction for the 4 way-point �V utilizes the definition in Eq. (20). The analytic
�V requirement at each way-point is tabulated in Table for the prescribed waypoint sequence in
Eq. (28). To evaluate the total fuel cost, the �vi’s about each body axes are summed using

�vtotal =

NwpX

i=0

= |�vi · ˆ

or| + |�vi · ˆ

o✓| + |�vi · ˆ

oh| (31)

Using the analytic form in Table , the total �v simplifies to

�vtotal =

2A

0

n

|| (4|�
1

| + 2|4�

1

+ 3↵ cos(↵)| + |3↵ + 4�

1

� 3↵ sin(↵)|)

+ 2B

0

n (| cot(↵)| + |1 � csc(↵)|) (32)

The particular multi-burn circumnavigation strategy is implemented in Mathematica. The speedup
factor is set to s = 1.7 for faster-than-natural and s = 0.75 for slower-than natural. The relative
orbit parameters are set to A

0

= B

0

= 10 meters. The resulting relative motion is illustrated in
Figure 3 with nominal in grey. Figure 3 does not provide clear visualization of the inertial transfer
orbits to hop between waypoints. However, it does provide significant insight into the warping of
the relative motion required for faster than natural circumnavigation. The in-plane projection in Fig-
ure 3(a) shows that the sped up circumnavigation shown in red requires sharper trajectory changes
at the waypoints on the along-track axis. The along-track view in Figure 3(b) shows that in order
to meet the out-of-plane waypoints, the relative motion is not longer a planar curve, but rather a
three-dimensional curve. The planar view in Figure 3(a) exhibits the expected squeeze in the rela-
tive motion plane. More interestingly, the along-track view in Figure 3(b) reveals the true warping.
Presented is a speed up factor of s = 1.7 and s = 0.75. The slower than natural motion warps in
the opposite manner to the faster than natural motion. The planar motion seen in Figure 3(a) shows
that the relative motion expands with the local velocity at each waypoint driving the spacecraft out
away from the nominal. The along-track view in Figure 3(b) shows how the spacecraft shifts largely
out-of-plane to delay the arrival.

Sweeping through the speed up factors above unity reveals that the maximum warping of the
along-track view occurs with s = 2. This is evidenced in Figure 4. The value s = 2 physically
describes a series of transfer orbits that phase the deputy spacecraft by half a period. As expected
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Figure 3. Open-Loop Forced 4 Waypoint Circumnavigation Illustration using A0 =

B0 = 10 meters. (—- s = 1.7, —- s = 0.75, —- Natural Motion)

with the circular chief, the faster than natural relative motion is symmetric. This symmetry breaks
down for the elliptic chief case. Increasing the speed up factor such that s > 2 transitions the relative
orbit geometry towards hyperbolic point-to-point trajectories. This manifests an along-track view
warping that decreases back into the nominal plane. The slower-than-natural solutions, s < 1,
exhibit an exponential divergence from the nominal relative orbit as the new trajectory approaches
the infinite size relative orbit at s = 0.

1.0 1.5 2.0 2.5

0.5

1.0

1.5

Speed Up Factor, s

Max Warping [m], A0= 10 [m]

Figure 4. Maximum warping away from the nominal planar circumnavigation.

The decrease in speed up factor from unity introduces a greater sensitivity in geometry change
and �V requirement than does the increase in speed up factor. This is evidenced in Figure 5 where
variations in the speed up factor and relative orbit sizing are considered. The nominal s = 1 does not
require any burns and is marked with the dashed red line. The asymmetry in speed up factor and the
increased requirement for larger orbits are visible in Figure 5. Consistent with the more substantial
relative orbit change seen in Figure 3 for the slower circumnavigation, Figure 5 highlights the more
rapidly increasing �V requirement for the same increment of change in the speed up factor. Recall
that the speed up factor appears in the denominator of the time of flight. It is therefore expected
that decreasing s towards zero will have an inverse power increase in �V with an inverse power
decrease towards larger speed up factors. Further exhibited is the increase in �V as the geometry
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Figure 5. Total �V for the 4 waypoint circular chief. Nominal is shown by —- .

enlarges. This is as expected as greater distance reduction is required for larger geometries with the
same speed up factor.

Presented is a circular chief faster than natural circumnavigation example. Given the trajectory
magnitudes considered, Figure 5 demonstrates the speed up is feasible with less than 250 mm/s.
The following sections introduce the elliptic chief case and another circular chief case used for
comparison.

SIMULATED 2 WAYPOINT STUDY FOR COMPARISON

Desired is the more general form for faster-than-natural circumnavigation enabling implementa-
tions with an elliptic chief. As mentioned in the derivation of the state transition matrix form, the
elliptic chief does not have a linear relationship between time of flight and true anomaly change.
Therefore, the elliptic chief waypoints are set to periapse and apoapse for simplicity in the STM
although the proposed methodology applies generally.

Consider first a comparison case where the chief is held circular and only the periapse and apoapse
waypoints are used. Utilizing the decoupling, the out-of-plane motion is removed to provide isola-
tion of the eccentric influence on planar relative motion. The mean motion of the chief is fixed at
n = 0.0007 rad/s and the considered 2 waypoint positions are given in sequence by

r(t

0

) = �2A

0

ˆ

o✓ (33a)
r(t

1

) = +2A

0

ˆ

o✓ (33b)
r(t

2

) = r(t

0

) (33c)

Again, enforced are the endpoint velocities to start from and end on the nominal relative orbit.

v(t

�
0

) = v(t

+

0

) = �nA

0

ˆ

or (34)

Similar to the development employed in Table ??, an analytic expression for the 2 way-point
circular chief �V is available and is not included here. The prescribed nominal relative motion and
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the relative orbits with a speed up factors of s = 1.7 and s = 0.75 are shown in Figure 6. Unlike
the planar motion seen in Figure 3(a), the faster circumnavigation traverses outside of the nominal
trajectory at the most radial nodes. The relaxation of the waypoints down from 4 to 2 moves the
circumnavigation closer to the efficiency of a 2-burn phasing maneuver. The important feature in
Figure 6 is that the relative motion remains symmetric for each segment with the circular chief.
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Figure 6. Open-Loop Forced 2 Waypoint Circumnavigation using A0 = 10 and B0 =

0 meters. (—- s = 1.7, —- s = 0.75, —- Natural Motion)

The reduced �V requirements are characterized in Figure 7. The respective �V magnitudes
have diminished in comparison to Figure 5. Comparison of Figure 5 and Figure 7 demonstrates the
trend towards the more efficient 2-burn phasing solution.
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Figure 7. Total �V for the 2 waypoint circular chief. Nominal is shown by —- .

The circular chief examples are fully presented with comparisons drawn between 2 and 4 way-
point solutions. The proposed faster than natural circumnavigation STM methodology is again ap-
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plied to an elliptic chief. The results of the circular chief sections provide insight into the influence
of ellipticity.

ELLIPTICAL CHIEF STM DEVELOPMENT

Desired is an elliptical chief faster than natural circumnavigation solution. The prescription of
the relative orbit fundamentally changes in moving to an elliptic chief. Consider the conceptual
visualization of the faster-than-natural circumnavigation with an elliptic chief shown in Figure 8.
The nominal waypoints are placed at the periapse and apoapse locations with respective LVLH
frames. The true anomaly for the nominal relative motion propagates from 0 to ⇡ for the first
segment and ⇡ to 2⇡ for the second segment. The faster-than-natural circumnavigation advances
the relative orbit waypoints to an earlier true anomaly. The red LVLH frames shown in Figure 8
represent the new relative motion coordinate systems at the advanced true anomaly positions. Also
seen in Figure 8 is the two part propagation through �f = ⇡/s which is fundamental to the STM
construction.

⇡

s

= ↵

⇡

s

= ↵

ˆo�

ˆo�

ˆo�

ˆo�

ˆor

ˆor

ˆor

ˆor

Elliptic Chief Orbit

Current LVLH Frame

Figure 8. Speed up factor influence on the positions of the waypoints for the elliptic chief.

The required STMs are constructed from the Eq. (8). In the circular chief case, the time of flight
and the change in anomaly angle were linearly related. In the eccentric chief, the time of flight and
true anomaly change are not linearly related. Further, in Eq. (10) the gravitational parameter µ and
the semi-major axis a appear in the STM. The equations can be non-dimensionalized by introducing
the mean motion n =

p
µ/a

3. The resulting elliptic chief STM retains terms of the form nt. The
time of flight t can be removed from the STM by inserting the geometrical change provided by
Kepler’s equation. Recall, the time-of-flight for a spacecraft under 2-Body motion is expressed by
Kepler’s equation

M(t) = M

0

+ n(t � t

0

) (35)

Given that the desired FTNC requires a mapping to the true anomaly speed-up, the definition of the
eccentric anomaly from the mean anomaly is utilized

M(t) = E(t) � e sin(E(t)) (36)
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Further, the eccentric anomaly is related to the true anomaly through

tan

✓
E(t)

2

◆
=

r
1 � e

1 + e

tan

✓
f(t)

2

◆
(37)

The time of flight t� t

0

is therefore obtained by inserting Eq. (36) into Eq. (35) with the definitions
in Eq. (37). The use of Kepler’s equation dictates that a general STM for all segments does not exist
for the elliptic chief trajectory. That is, a unique STM is constructed for each segment. In the case
of the two waypoint solution, the respective STMs employed are

[�

X,1(f =

⇡

s

, f

0

= 0)] [�

X,2(f =

2⇡

s

, f

0

=

⇡

s

)] (38)

The speed up factor is present in the elliptic STMs such that the midpoint maneuver happens at a
shifted true anomaly. Effectively, the speed up factor advances the true anomaly of the relative orbit
geometry. The second state transition matrix [�

X,2] may often span across the chief apoapse and
introduces substantial relative motion influence for the later half of the trajectories considered.

For the following visualizations, the chief eccentricity is set to a modest e = 0.3 with a mean
motion of n = 0.0007 rad/s. The argument of periapse is set to zero and the inclination of the chief
orbit does not appear in the planar relative orbit case. The considered 2 waypoint positions are given
in sequence by

r(t

0

) = �2A

0

ˆ

o✓ (39a)
r(t

1

) = [�

X,1(f = ⇡, f

0

= 0)]X(t

0

) ⇡ +2.2A

0

ˆ

o✓ (39b)
r(t

2

) = r(t

0

) (39c)

The nominal velocity conditions enforced are the endpoint velocities.

v(t

�
0

) = v(t

+

0

) = �nA

0

ˆ

or (40)

The prescribed nominal relative motion and the relative orbits with a speed up factor of s =

1.7 and speed of s = 0.88 are shown in Figure 9. The first segment of the faster than natural
trajectory appears to have similar form to the segments seen in the circular chief. As anticipated,
the second part of the relative motion segment experiences dramatically different character than the
circular chief. Most notable is the turn inward well inside the near 2-1 nominal ellipse. Recall that
the trajectory begins in a trailing along-track position and then transitions into the negative radial
towards the leading along track position. A critical set of features in Figure 9 are the kinks in the
relative motion trajectory. These kinks are indicative of apoapse and periapse crossings. Careful
inspection of the first segment in the slower than natural trajectory reveals a kink at the largest
along-track magnitude. Utilizing a speed up factor of s = 0.88 dictates that the first waypoint is
reached after the chief has passed through apoapse. The trajectory kink marks the chief apoapse
crossing. Observe the most clear kink in the second half of the slower than natural trajectory in
Figure 9 where the trajectory nearly aligns with the nominal. The slowed trajectory reaches the
second waypoint, or the original relative position, after the chief has passed periapse. The chief
periapse crossing introduces this kink. Careful inspection reveals that a kink also exists in the faster
than natural trajectory just following the second segment crossing a zero along-track position. This
kink event marks the chief apoapse crossing for the faster than natural circumnavigation.
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Figure 9. Open-Loop Forced 2 Waypoint Circumnavigation using A0 = 10 meters.
(—- s = 1.7, —- s = 0.88, —- Natural Motion)

The effective of an elliptic chief is evidenced in the kinked relative motion trajectories for faster
than natural circumnavigation. The behavior is further examined with a sweep of speed up factors
ranging over smin = 1.1 to smax = 1.9 with an increment of �s = 0.2. The collection of trajectories
is displayed in sweeping color shown in Figure 10. Careful inspection of Figure 10 reveals the chief
apoapse crossing in all trajectories. As expected, the larger the speed up the later in the second
segment the kink appears.
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Figure 10. Open-Loop Forced 2 Waypoint Circumnavigation using A0 =

10 and B0 = 0 meters. (—- s = 1.1, —- s = 1.3, —- s = 1.5, —- s = 1.7, —- s =
1.9, —- Natural Motion)

The behavior in Figure 10 influences the �V requirement sweep with clear speed up markers.
Figure 11 presents a sweep of the speed up factor and initial position geometry. Inspection of s = 2

in Figure 11 reveals a kink transition in the smooth contour. The physical significance of the s = 2

vertical is that speed up factors greater than 2 never cross the chief apoapse. An increasing negative
slope is present immediately following the s = 2 vertical suggesting a discontinuity in efficiency
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change for such transfers. Comparison of Figure 11 and the circular chief case in Figure 7 shows
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Figure 11. Total �V for the 2 waypoint elliptic chief. Nominal is shown by —- .

that the elliptic chief relative orbit requires greater �V for the same speed up factor. This is largely
attributed to the nonlinear time of flight experienced by the deputy around and elliptic chief. To
affect the same speed up change, a greater �V than the circular counterpart is required. A dramatic
near singular solution exists in the implementation of the speed up factor. Not shown in Figure 11
are the �V contours for s = 0.5. In the elliptic chief case, a speed up of s < 0.5 constitutes a
segment-wise multiple revolution solution when using the periapse and apoapse waypoints. The
STM is solution is ill-equipped to address the multi-revolution solution for the elliptic chief. This is
a topic of future investigation.

Presented is a selected case of the elliptic chief faster than natural circumnavigation. Demon-
strated is the applicability of the proposed STM methodology to general faster than natural circum-
navigation reconfigurations.

CONCLUSIONS

A methodology is presented for developing impulsive faster-than-natural circumnavigation solu-
tions for general orbit geometries. The general relative motion state transition matrix is developed
from an orbit-element difference formulation for both the circular and elliptic chief cases.Two cases
are shown of circular chief faster-than-natural circumnavigation and one case of an elliptic chief.
The results demonstrate how the natural planar relative orbit trajectory becomes a three-dimensional
curve if the circumnavigation time is sped up or slowed down. A maximum three-dimensional warp-
ing is found to occur around a speed up factor of 2 for the circular chief case. As the speed up factor
is further increased, the non-planar warping is reduced bak towards the nominal plane. Further, for
the elliptic chief case, the way-point matching may result in more complex relative trajectories due
to the periapse and apoapse regions. Future work will consider a greater range of elliptical chief
cases and will consider eccentric anomaly, mean anomaly, and/or direct orbit element difference
formulations.
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