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TOUCHLESS ELECTROSTATIC DETUMBLING WHILE TUGGING
LARGE AXI-SYMMETRIC GEO DEBRIS

Trevor Bennett∗ and Hanspeter Schaub†

Touchless detumbling of the three-dimensional spin of axi-symmetric space debris
is investigated to enable orbital servicing or active debris removal in the Geosyn-
chronous belt. Using active charge transfer between a servicing spacecraft and
debris object, control torques are created to reduce the debris spin rate prior to
making any physical contact. First considered is the addition of nominal tugging
and pushing of deep space 3-dimensional detumble. The proposed control pro-
vides momentum reduction and clear equilibrium surfaces. This work also extends
the projection angle theory for three-dimensional tumbling motion to on-orbit rel-
ative motion. Prior work has identified the limitations of electrostatic detumble for
three degree rotational freedom without relative positioning maneuvers. Using the
Multi-Sphere Modeling method for electrostatic torques, servicer formation flying
demonstrates improved detumble capability. The numerically simulated orbiting
along-track formation provides a natural relative inertial motion that helps remove
all debris angular velocity except for the spin about the symmetry axis.

INTRODUCTION

Orbital servicing is a challenging space mission concept that requires a servicing vehicle to ap-
proach and mechanically interface with a defunct satellite or satellite component.1, 2, 3 If the debris
is tumbling, the docking process becomes challenging or impossible and presents a significant col-
lision risk. Advanced docking systems such as those being developed by MDA discuss a maximum
tumble rate of 1 degree/second for autonomous docking.4 Touchless methods, such as the the Elec-
trostatic Tractor (ET), are being considered for both large GEO debris mitigation.5, 6, 7 Reference 8
discusses how electrostatic torque can be controlled to apply torques on a spinning debris object
without requiring physical contact as shown in Figure 1. The charging is controlled through an elec-
tron gun aimed at the debri charging the servicer positively and the debris negatively. The resulting
potential difference creates the attractive force capable of detumbling the target object. Touchless
electrostatic detumble of large Geosynchronous (GEO) debris objects is the focus of this paper. The
applications of a touchless method may extend beyond GEO to encompass asteroid interaction or
spin control.9, 10

Electrostatic actuation of spacecraft has been explored since the 1960s. Reference 11 highlights
the Geosynchronous Orbit environment as a candidate region where the space plasma conditions
enable Debye lengths on the order of 100’s of meters. As a result, electrostatic control requires
only Watt-levels of power requirements. The fuel efficiency in implementing electrostatic actuation
is counterbalanced by increased complexity and highly-coupled nonlinear differential equations.12
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Figure 1. Electrostatic Detumbling Concept Illustration.

Overcoming the control and modeling complexity enables servicing spacecraft to impart relative po-
tentials on itself and either another controlled spacecraft or an uncooperative body. Non-cooperative
electrostatic control sees application in orbital space debris mitigation, orbital servicing, and detum-
ble for rates exceeding the capabilities of current docking or grappling techniques.

The feasibility of electrostatic control and actuation in space has been explored by several authors
for a diverse range of applications from formation flying to deployable structures.13, 14, 15, 16, 17, 18, 19

Electrostatic interaction between two spacecraft in a vacuum is accurately determined using finite
element methods; however, these methods are computationally expensive. Stevenson and Schaub
introduced a new method called the Multi-Sphere Method (MSM)12, 20 that approximates the elec-
trostatic interaction between spacecraft with orders of magnitude less computational time, enabling
attitude simulations and control developments. The multi-sphere method, summarized in detail
during the following sections, partitions the spacecraft volume into a series electrostatic conduct-
ing spheres held at a common spacecraft potential. Using the recently developed MSM technique,
Reference 8 studies the charged relative one-dimensional rotational dynamics of a non-cooperative
cylinder and a spherical charge-controlled spacecraft with experimental validation.21

Reference 22 generalized the one dimensional detumble representation to three dimensional gen-
eral tumble. Identified were specific debris attitudes where the servicer spacecraft has no control
authority on the debris tumble. The fixed servicing spacecraft relative position inhibits the produc-
tion of differential using the 3-sphere MSM model employed such that no differential torques are
produced. Desired are servicer relative motions that prevent loss of control authority. The orbital
motion, shown in Figure 2 motivates study into servicer relative orbits influenced by electrostatic
detumble. The relative position shown at the bottom of Figure 2 shows where the electrostatic force
has a greater effect on the nearest part of the debris object and therefore induces a differential torque.
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Figure 2. Relative motion of servicer spacecraft around tumbling debris object.

In the relative position shown on either side of Figure 2 shows where minimal or zero differential
torque is generated. Earlier work explores Coulomb formation flying and tug trajectories.23, 24 In
contrast, this work addresses relative motion applied to detumble of the debris object. This work
expands the prior analysis to consider natural relative orbital motion and the stability of nominal
attractive or repulsive electrostatic tractor present while the detumble is performed. Several ap-
proaches using Coulomb and Lorentz force have been studied to utilize the electrostatic effects for
satellite formation flying.25, 26, 27 However, this work addresses the advantages of relative orbits on
detumble performance.

Upper stage rocket bodies form a large component of GEO debris, justifying the assumption of a
cylindrical debris shape for the scope of this paper. Of interest is how torque equilibriums impact the
convergence of the general tumbling scenario, the stability of such equilibria, and the development
of a general detumble and relative motion control algorithm. The following sections detail the
Multi-Sphere Method and the previously developed attitude description. The paper concludes with
the work in progress.

MULTI-SPHERE METHOD

The Multi-Sphere Method (MSM) represents the complete spacecraft electrostatic charging model
as a collection of spherical conductors carefully dispersed through the body.12 The cylinder con-
figuration representative of the above mentioned rocket bodies and defunct spacecraft is detailed in
Figure 3. The 3-sphere MSM approximation provides sufficient force and torque accuracy for the
separation distances considered.20

The modeled configuration parameters are the separation distance d, the cylinder rotation about
the inertial z axis θ, the pitch angle defined from the inertial x-y plane ψ, and the control voltages
φ1 and φ2. The inertial coordinate system is fixed to the controlled spherical spacecraft with the z
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êL

�

FThrust

X̂

Ŷ
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Figure 3. 3 sphere MSM cylinder and spherical spacecraft configuration.

axis pointed up, the y axis pointed along the relative distance vector, and the x axis completing a
right-handed system. The cylinder has body fixed aircraft-type coordinates with b̂1 through the long
axis, b̂3 pointed down , and b̂2 for a right handed system. This positive cylinder pitch of is described
as a positive b̂2 rotation.

The electrostatic forces are determined by the charges residing on each sphere. These result
from the prescribed electric potentials, according to the self and mutual capacitance relationships in
Equation 1, where kc = 8.99× 109Nm2/C2 and qi is the charge of each sphere.28, 29

φi = kc
qi
Ri

+
m∑

j=1,j 6=i

kc
qj
ri,j

(1)

These relations can be represented in matrix form


φ1

φ2

φ3

φ4

 = kc


1/R1 1/ra 1/rb 1/rc
1/ra 1/R2,a 1/l 1/2l
1/rb 1/l 1/R2,b 1/l
1/rc 1/2l 1/l 1/R2,c



q1

qa
qb
qc

 (2)

Inverting the matrix multiplying the charge at a given instant in time produces the forces and
torques given by the summations

F 2 = kcq1

c∑
i=a

qi
r3
i

ri (3)

L2 = kcq1

c∑
i=a

qi
r3
i

r2,i × ri (4)
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The servicing sphere and debris cylinder remain at a constant separation distance requiring a
thrusting force to counter-balance the net attractive or repulsive electrostatic forces on each space-
craft. The control development assumes the necessary thrust force is present and the relative motion
of the spacecraft is captured.

DEEP SPACE DETUMBLE WITH NOMINAL TUGGING AND PUSHING

The following develops the deep space detumble attitude dynamics and stability arguments when
a nominal attractive or repulsive potential is prescribed. The nonimal potential serves as a tug or
push to translate the entire system.

Debris Attitude Description

The detumble control, developed previously, relies on the simplified dynamics achieved for the
given spherical servicer craft and cylindrical debris object. The axisymmetric debris object with
internal MSM spheres does not have a torque component about the cylinder slender axis, the b̂1

axis.22 Therefore the torque axis and projection angle about the torque axis are defined.

êL = b̂1 ×−r̂ (5)

Φ = arccos
(
b̂1 · (−r̂)

)
(6)

where r̂ is the unit direction from the servicer spacecraft mass center to the tumbling body mass
center, or the direction of the relative position vector. It was shown in Reference 22 that through the
use of this projection angle of a cylinder slender axis onto the relative position vector, that the three
dimensional rotation equations of motion reduce to scalar equations of the for in Eq (7). Consistent
with the assumption of an axi-symmetric geometry, there exists no control authority in the slender
axis, b̂1, scalar equation because no cross coupling is present. The presented form is accurate for an
inertially fixed relative position vector.

Iaω̇1 = 0 (7a)

Itη̇ − Iaω1Φ̇ sin Φ = 0 (7b)

It

(
Φ̈ sin Φ− η2 cos Φ

sin2 Φ

)
+ Iaω1η = L (7c)

where Ia is the axial moment of inertia, It is the transverse moment of inertia, and the pseudo
angular velocities are defined by

η ≡ −ω2(r̂ · b̂2)− ω3(r̂ · b̂3) (8a)

Φ̇ sin Φ = −ω2(r̂ · b̂3) + ω3(r̂ · b̂2) (8b)

L = −LêL = −f(φ) sin (2Φ) êL (8c)

Considered is a control law that successfully drives the projection angle rate to zero. Without loss
of generality, the non-cooperative cylinder is assumed to have the same potential magnitude as the
servicer, that is φ2 = |φ1|, and is assumed to be always positive.8 Thus, the voltage dependency
function is set to:8

f (φ) = φ|φ| (9)
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Thus lending the control previously studied by Reference 22 is the stability of the 3-dimensional
projection angle formulation expansion first proposed by Reference 8:

f(φ1) = −sgn

(
n∑

m=1

gm(Φ)

)
f(φmax)

arctan(αΦ̇)

π/2
(10)

where α > 0 is a constant feedback gain and f(φmax) is the maximum feasible potential available.
The control law as shown in Eq. (10) provides proven asymptotic reduction of the projection angle
rate.22 However, the presented form does not provide nominal pushing or pulling authority nor
stability proof. The following section details the inclusion of nominal pushing and pulling into the
control formulation and provides a Lyapunov proof of stability.

Detumble Control with Nominal Tugging and Pushing

Variation to the 3-dimensional detumble previously discussed, the circumstance where the ser-
vicing spacecraft is imparting a nominal push or pull on the debris object may also be desired. The
electrostatic push or pull is obtained by a non-zero nominal control potential with discussion con-
strained to an inertially fixed relative position vector. Consider the projection angle expansion of
the non-zero nominal potential form first proposed by Reference 8

V (Φ, Φ̇) =
1

2
ωT Iω + β

∫ Φ

0
gm(x)dx (11)

where g(x) is

gm(Φ) =

n∑
m=1

γm sin(2Φ) (12)

with α > 0 being a constant feedback gain and the function h is constrained such that:8

h(x)x > 0 if x 6= 0 (13)

For this study, the following function h is proposed:

h(αΦ̇) = f(φmax)
arctan(αΦ̇)

π/2
(14)

The Lyapunov function in Eq. (11) is positive definite when restrictions are placed on γm based on
the projection angle function g(x).

The assurance of a positive definite Lyapunov function enables the time derivative of Eq. (11) to
be taken.

V̇ (Φ, Φ̇) = ωTL + βgm(Φ)Φ̇ (15)

Including the detumble control torque into the Lyapunov derivative and collecting terms, the
simplified form of Eq. (15) becomes Eq. (16).

V̇ (Φ, Φ̇) = [f(φ1) sin Φ + β] gm(Φ)Φ̇ (16)

The desired form of the control provides reduction of the projection angle rate Φ̇ to zero pre-
scribing that the bracketed terms in Eq. (16) equate to the desired controller in the stable control in
Eq. (10) the expression in Eq. (17).
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Figure 4. Equilibrium attitudes for nominal tugging and pushing potentials in deep space.

f(φ1) = − β

sin(Φ)
− sgn (gm(Φ))h(αΦ̇) (17)

The leading term in Eq. (17) represents the nominal potential prescribed for electrostatic pushing
and pulling. Therefore the β feed-forward gain is defined as

β = −f(φnom) sin(Φ) (18)

Substituting the resulting new potential of Eq. (17) with defined β into the expression in Eq. (16)
provides the final form for the Lyapunov derivative.

V̇ (Φ, Φ̇) =
[
−β − sgn (gm(Φ))h(αΦ̇) sin(Φ) + β

]
gm(Φ)Φ̇ (19a)

= −sgn (gm(Φ)) gm(Φ) sin(Φ)h(αΦ̇)Φ̇ (19b)

which is shown to be negative semi-definite by Reference 22 around Φ = 0 and provides asymptotic
stability with additional invariant set arguments. Given a nominal pushing or pulling electrostatic
potential, the control form presented provides asymptotic convergence to a nulled projection angle
rate. Using a projection angle form, the nominal equilibrium projection angles from the analysis
in Reference 8 apply. Inclusion of a attractive nominal potential, the cylinder rests at a projection
angle of zero. Inclusion of a repulsive nominal potential rests the cylinder at a projection angle of
90◦. However, given that the projection angle describes a 3-dimensional attitude the interpretation
of the equilibrium angle is different than previous studies. A projection angle of zero, that of the
nominal tugging case, is unambiguous and refers to a perfect alignment between the slender axis of
the cylinder and the relative position vector. A projection angle of Φ = 90◦ provides an infinite set
of attitudes as the projection angle only defines an admissible plane for the slender axis to reside
within. Therefore, any combination of body attitudes and angular rates that restricts the slender
axis to the plane for all time is admissible as an equilibrium state with nominal repulsive force. This
3-dimensional definition of the projection angle fully encapsulates previous results and is applicable
to more a general tumble of a debris cylinder.
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Figure 5. Component breakdown of momentum. Colored to represent the ability for
detumble influence.

ON ORBIT ELECTROSTATIC DETUMBLE WITH ZERO NOMINAL POTENTIAL

Of great interest is the control law detumble performance while the servicer and debris are in
orbit. Prior analysis has only considered the detumble performance in deep space where the relative
position vector remains stagnant as seen by the inertial frame.8, 22 The following describes the on
orbit momentum decrease with the control law proposed above to discuss final attitudes of the
servicer-debris system. The momentum decrease discussion is independent of orbit type. The
numerical simulation applies the derived concepts to a lead-follower GEO circular orbit.

Momentum Dumping on Orbit

To stably remove angular momentum from the on orbit debris object, the following Lyapunov
function provides conditions on the implemented controller.

V =
1

2
ωT Iω (20)

and derivative
V̇ = ωTL (21)

where the electrostatic torque is always about the êL vector such that

V̇ = −L(ω · êL) (22)

Observing Eq. (22) the control design emerges in the prescription of the torque magnitude L. There-
fore, for an implemented control to monotonically reduce the angular velocity and thereby the an-
gular momentum, the sign of L is selected such that Eq. (22) is always negative semi-definite. The
proposed controller in Eq (10) satisfies this sign requirement and therefore monotonically reduces
the angular velocity.

Confidence in a stable decrease in angular momentum enables further study into the magnitude of
angular momentum dumping. The angular momentum vector components can be expressed along
the E-frame and relative position vector with the decomposition graphically represented in Figure 5.
Recall that angular momentum aligned with the relative position vector H‖r cannot be removed in
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the instantaneous configuration. Using Figure 5(b) and assuming the relative position vector is fixed
inertially, a nonzero H‖r may exist producing a body cone where b̂1 sweeps around r̂ requiring η to
also be nonzero. In such an instance would result in an incomplete reduction in angular momentum
with a body cone determined by the relative magnitudes of ω1 and η.22

Alternatively, if the relative position vector r̂ changes inertially, then the momentum decompo-
sitions shown in Figure 5 present an instantaneous snapshot. The magnitude of H‖r is therefore
subject to the dynamics of r̂ suggesting that reconfiguration may remove greater angular momen-
tum. Recall that the electrostatic torque is only produced around the êL vector defined by Eq (5).
The detumble control produces a torque while the angular momentum derivative and the torque axis
are aligned. That is:

L = 0 IFF Ḣ · êL = 0 (23)

Study of the cases where the torque does go to zero for all time reveals the steady state behavior
of the detumble control. The classical Euler rotational equations are defined for an axi-symmetric
body.

Ḣ =

 Iaω̇1

Itω̇2 + (Ia − It)ω1ω3

Itω̇3 + (It − Ia)ω1ω2

 (24)

Taking the dot product between Eq (24) and êL, with the definition of η defined in Eq. (8), to find
where the torque is zero produces Eq. (25).

0 = It

[
ω̇2(r̂ · b̂3)− ω̇3(r̂ · b̂2)

]
+ (Ia − It)ω1η (25)

A steady state η can be found if Eq (25) remains true for all remaining time. The steady state η is
therefore:

ηss =
−It

ω1(Ia − It)
[
ω̇2(r̂ · b̂3)− ω̇3(r̂ · b̂2)

]
(26)

The leading coefficient of Eq. (26) is constant for the axi-symmetric body. Therefore, the bracketed
term of Eq. (26) must remain constant at steady state thereby imposing restrictions on the final
momentum of the system. Additional insight is gained through study of the modified projection
angle rate equation derived from the time derivative of Eq. (6) with an non-stationary inertial relative
position.

Φ̇ sin(Φ) = ω3(r̂ · b̂2)− ω2(r̂ · b̂3) + (b̂1 · ˙̂r) (27)

When the controller provides no additional torque for the remainder of time, the projection angle
rate must be zero. Therefore, the right hand side of Eq. (27) must be zero. Suppose the controller
is successful at removing all the transverse angular velocity when r̂ is non-stationary. In such a
case, the dot product between the slender axis and the relative position rate must be zero dictating
a final projection angle of 90◦ for all remaining time. The implemented control uses the projection
angle rate defined by Eq. (27). The performance of the control is numerically demonstrated in the
following section.

Detumble Simulation in Orbital Environment

A numerical simulation is performed to validate the on-orbit detumble performance and final
attitude predictions. The first simulation presents the deep space case where gravitational effects
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are negligible in comparison to the electrostatic force. The second simulation presents the on-oirbit
detumble with same initial relative position and tumble conditions as the deep space case. The
simulations place the servicer spacecraft 12.5 meters away from a generally tumbling cylinder. The
numerical simulation includes the 6-DOF motion of the debris and 3-DOF translational motion
of the servicer sphere. A closed-loop servo control is used to maintain a fixed relative position
between servicer and debris. A 4th order Runge-Kutta integration is employed with a time step of
0.01 seconds. The servicer vehicle potential is controlled via Eq. (10), while the electrostatic force
is evaluated using the full MSM model in Eqs. (2)–(4). This deep space detumble shown in Figure 6
re-creates a case from Reference 22. The cylinder is generally tumbling with a combined angular
velocity of 2◦/sec. The comparison of the control, projection angle, and momentum alignment are
presented in Figure ]reffig:sim1.

Inspection of Figure 6(a) shows the deep space projection angle collapses to a measure around
97◦ which is predicted by the equations of motion in Eq. (7) and the angular momentum decom-
position in Figure 5. The full derivation and proof of the steady state projection angle is provided
in Reference ?. However, the deep space projection angle rate goes to zero and the implemented
control turns off. The angular momentum alignment with the deep space relative position vector
moves towards either 0 or 180◦ as seen in Figure 6(e).

Consider the same initial tumbling conditions presented above with the servicer now leading the
debris object in a circular GEO orbit. Given a lead-follower relative orbit, the inertial relative posi-
tion vector is no longer constant. The resulting detumble is presented in right column of Figure 6.
Visible at the tail end of the control potential in Figure 6(b) is a non-zero periodic control with
decreasing magnitude. The non-zero potential indicates that the implemented control can provide
additional momentum dumping after the primary phase. The projection angle history in Figure 6(d)
and Eq. (27) provide sufficient understanding of the supplementary momentum dumping. Inspec-
tion of Figure 6(d) shows a mean oscillation that corresponds directly to the GEO orbit period.
The oscillation about this mean is reduced to near zero followed by further reduction of the mean
magnitude. This reduction character is dictated by the dominant terms in Eq. (27). During the pri-
mary detumble phase, the dominant terms are the body fixed angular velocities which dwarf the ˙̂r
introduced by a GEO lead-follower relative orbit. Once the angular velocities are sufficiently re-
duced, the orbit motion contribution becomes dominant and the projection angle begins to collapse
towards a steady-state angle. In the deep space case presented in Figure 6 the angle between the
angular momentum and the relative position vector moved towards either 0◦ or 180◦. In the on orbit
case, the angular momentum vector appears to oscillate and then collapse towards an angle of 90◦.
This is supported by Eq. (27) where if the orbital motion remains the dominant term then the b̂1

spin axis must be perpendicular to ˙̂r for all future time. Since in a lead-follower relative orbit ˙̂r
sweeps a plane, then b̂1 must reside perpendicular to the plane. If b̂1 is perpendicular to the plane,
which coincides with the orbit plane, then the final projection angle is Φss = 90◦. Such a projection
angle does not appear to violate Eq. (26) and is therefore an admissible final state for the on orbit
simulation.
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Figure 6. Numerical simulation with initial conditions: ω = [0.5,−1.374, 1.374],
Φ0 = 30◦ comparing both deep space (left column) and on orbit (right column).
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Figure 7. Angular momentum with initial conditions: ω = [0.5,−1.374, 1.374],
Φ0 = 30◦ comparing both deep space (left column) and on orbit (right column).

Additional insight is gained by the inspection of the body frame angular velocities and the inertial
angular momentum vector both shown in Figure 7. Clearly visible in Figure 7(a) is the constant
slender axis rotation around b̂1 and the convergence to angular velocity oscillation between ω2

and ω3 while in deep space. The steady-state angular velocities in the presented deep space case
are a degenerate case of Eq. 26. The deep space case has a fixed inertial r̂ which provides an
opportunity for the final coning motion of the debris object to satisfy the bracketed term in Eq. 26
with nonzero transverse angular velocities. Further, with the inertially fixed r̂ the H‖r magnitude
remains unaffected. Figure 7(c) shows the inertial HY component unchanged where the other two
components are driven to zero. The combination of a coning angle and the unchanged parallel
angular momentum component produces ηss 6= 0 and an incomplete angular momentum reduction.

Comparison of the detumble performance reveals that the on orbit motion provides additional
momentum dumping using nearly equivalent time as in deep space. The relative motion suggests
greater momentum observability by the control torque leading to more effective momentum removal
with greatest evidence in the angular velocity reduction in Figure 7(b). As expected, the body frame
angular velocities for the on orbit case are reduced to nearly zero where the slender axis ω1 remains
unaffected. The inertial angular momentum time history in Figure 7(d) provides additional sup-
port for a more complete debris detumble. Comparision to Figure 7(c) reveals that all three inertial

12



momentum vectors are influence when a non-stationary r̂ is introduced. The adjustment during
the supplementary phase does not experience an increase in angular momentum magnitude only a
reconfiguration towards the Φ = 90◦ steady-state condition. The on orbit simulation demonstrates
that the inclusion of simple on orbit relative motion provides increased detumble performance fur-
ther suggesting electrostatic detumble as a viable touchless detumble method.

CONCLUSIONS

Studied are the nominal push and pull equilibrium states for a cylindrical debris object in deep
space. Shown is that a servicer craft can impart both a detumble torque and a nominal push or
pull with a stable and predictable outcome. Developed is a generalization of the previously derived
stability proof to characterize the equilibrium surfaces. The deep space projection angle dynamics
and Lyapunov proof provide that nominal tugging move towards a zero projection angle where the
nominal pushing move towards a 90◦ projection angle. The use of the 3-dimensional projection
angle allows a full encapsulation of the simplified 1-dimensional rotation case.

Further studied is the detumble performance while the servicer-debris system is in a lead-follower
GEO orbit around Earth. Demonstrated is a more complete detumble in comparison to the deep
space case. The addition of a non-stationary inertial relative position vector provides sufficient mo-
mentum observability to effectively remove nearly all the non-slender axis momentum. Derived
were the necessary conditions on the resulting angular velocities at steady state which are used to
predict steady state attitude. The proposed controller is numerically verified in numerical simulation
with comparisons made between deep space and on orbit performance. The presented study pro-
vides motivation for additional work regarding intelligent movement of the relative position vector
for best detumble performance.

Future work will address the electrostatic detumble benefits of alternate relative orbits. It is
believed that prescription of the relative motion as a control variable will greatly improve specific
detumble scenarios. The steady state behavior of electrostatic detumble while on orbit will be
further studied to produce more concise analytical predictions of steady state behavior.
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[29] J. Sliško and R. A. Brito-Orta, “On approximate formulas for the electrostatic force between two con-

ducting spheres,” American Journal of Physics, Vol. 66, No. 4, 1998, pp. 352–355.

14

http://www.niac.usra.edu

	Introduction
	Multi-Sphere Method
	Deep Space Detumble with Nominal Tugging and Pushing
	Debris Attitude Description
	Detumble Control with Nominal Tugging and Pushing

	On Orbit Electrostatic Detumble with Zero Nominal Potential
	Momentum Dumping on Orbit
	Detumble Simulation in Orbital Environment

	Conclusions
	Acknowledgments

