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AAS 14-378

TOUCHLESS ELECTROSTATIC THREE-DIMENSIONAL
DETUMBLING OF LARGE GEO DEBRIS

Trevor Bennett∗ and Hanspeter Schaub†

Touchless detumbling of space debris is investigated to enable orbital servicing or
active debris removal. Using active charge transfer between a tug and debris ob-
ject, control torques are created to reduce the debris spin rate prior to making any
physical contact. In this work, the tug shape is spherical and the debris is assumed
to be cylindrical and tumbling. The attitude control goal is to arrest the debris tum-
bling motion while maintaining a fixed position ahead of the GEO debris object.
Prior work has identified the feasibility of electrostatic detumble for one degree of
rotational freedom. This work extends the theory to three-dimensional tumbling
motion. Using the previously developed Multi-Sphere modeling method for elec-
trostatic forces and torques on non-spherical objects, Lyapunov control theory and
numerical simulations are used to demonstrate a stabilizing attitude control.

INTRODUCTION

Non-cooperative electrostatic control sees application in orbital space debris mitigation for bodies
in Geosynchronous orbit such as defunct dual-spin spacecraft or spent upper-stage boosters. These
objects of interest tumble at rates exceeding the capabilities of current docking or grappling tech-
niques. Orbital servicing is a challenging space mission concept that requires an active host vehicle
to approach, and mechanically interface with a defunct satellite or satellite component.1, 2, 3 If the
debris is tumbling, the process of docking onto the debris presents challenges and collision risks.
Advanced docking systems such as those being developed by MDA discuss a maximum tumble rate
of 1 degree/second for autonomous docking.4 A touchless method of detumbling a passive object
would greatly simplify the rendezvous and docking phase of an orbital servicer, and is the focus
of this paper. Reference 5 discusses how electrostatic torque can be controlled to apply torques on
a spinning debris object without requiring physical contact as shown in Figure 1. The charging is
controlled through an electron or ion gun that charges the tug positively or negatively and the debris
positively. Such electrostatic actuation with a passive object is called an Electrostatic Tractor (ET),
and is being considered for both large GEO debris mitigation6, 7, 8 as well as touchless asteroid spin
control.9, 10

Electrostatic actuation of spacecraft has been explored since the 1960s. Reference 11 shows that
the Geosynchronous Orbit environment is a candidate region where space plasma conditions enable
Debye lengths on the order of 100’s of meters with electrostatic control requiring only Watt-level
power requirements. The feasibility of electrostatic control and actuation in space has been explored
by several authors exploring both applications and charging dynamics12, 13, 14, 15, 16, 17, 18 Electrostatic
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Figure 1. Electrostatic Detumbling Concept Illustration.

detumble control could reduce the non-cooperative spacecraft rates prior to using other proximity
or docking operations while minimizing onboard fuel usage.

The prospect of fuel efficiency in implementing electrostatic actuation is counterbalanced by in-
creased complexity and highly-coupled nonlinear differential equations.19 Electrostatic interaction
between two spacecraft in a vacuum is accurately determined using finite element methods; how-
ever, these methods are computationally expensive and time intensive. Overcoming the modeling
complexity enables onboard and autonomous spacecraft control through control of relative poten-
tials on itself and another spacecraft or uncooperative body. Stevenson and Schaub introduce and
validate a new method called the Multi-Sphere Method (MSM)19, 20 that accurately approximates
electrostatic interaction between spacecraft with orders of magnitude less computational time en-
abling attitude simulations and control developments. The multi-sphere method, summarized in the
following sections, partitions the spacecraft volume into a series electrostatic conducting spheres
constrained by a spacecraft potential. Using the recently developed MSM technique, Reference 5
studies the charged relative one-dimensional rotational dynamics of a non-cooperative cylinder and
a spherical charge-controlled spacecraft. A Lyapunov control development is provided to analyti-
cally guarantee global stability of the spin rate with the nominal ET force is assumed to be zero.
The MSM result is used in numerical simulation to validate the expected control performance for
all these 1-D despin scenarios. An experimental setup demonstrating electrostatic detumble control
for 1-D cylinder rotation is discussed in Reference 21.

The focus of this study is the generalization of the one-dimensional detumble control to three-
dimensional detumble control using Lyapunov control techniques and the MSM electrostatic model.
The study will consider a non-cooperative tumbling cylinder and a spherical control spacecraft sep-
arated by a fixed distance. Upper stage rocket bodies form a large component of GEO debris,
justifying the assumption of a cylindrical debris shape for the scope of this paper. The objects are
assumed to be in deep space, and no gravitational attraction is assumed. Reference 5 postulates a
simplified electrostatic torque model with separation of the voltage and attitude dependent compo-
nents. This assumption is shown to be good if the separation distance is at least 3-4 craft radii. In
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this paper this separation of voltage and attitude dependency of the electrostatic torque is investi-
gated in more detail for debris undergoing three-dimensional rotations. Of interest is how torque
equilibriums impact the convergence of the general tumbling scenario, the stability of such equi-
libria, and the development of a general detumble ET control algorithm. The following sections
detail the Multi-Sphere Method, the torque development, and proposed control structure. The paper
concludes with numerical simulations and analysis.

MULTI-SPHERE METHOD

The Multi-Sphere Method (MSM) represents the complete spacecraft electrostatic charging model
as a collection of spherical conductors dispersed through the body19 to provide induced charging ef-
fects consistent with finite element methods. The cylinder configuration representative of the above
mentioned rocket bodies and defunct spacecraft is represented in Figure 2.
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Figure 1. 3 sphere MSM for cylinder-sphere configuration

cylinder shape is of interest as many old dual-spinner configurations and rocket bodies need to be
moved outside the GEO zone. The only control used are the spacecraft potentials which are assumed
to be of equal magnitude for each body. This assumption is the preferred potential arrangement for
an electrostatic tug, and thus has great practical relevance. Of interest is can the tumbling body be
brought to rest, and are repulsive and attractive forces required? Further, if the nominal spacecraft
potential is non-zero, as in the electrostatic tug scenario, to what attitudes will the tumbling body
converge.

The paper is organized as follows. First, the multi-sphere method is reviewed, and a particular
solution is provided for a cylindrical prototype spacecraft body. A simplified electrostatic torque
model is considered suitable for the feedback control development. The charged relative attitude
orientations for a slender cylinder are discussed along with their stability. Finally, nonlinear con-
trol strategies are considered to detumble the second object while maintaining a fixed separation
distance. Numerical simulations illustrate the closed loop performance.

MULTI-SPHERE METHOD

In order to develop the stability arguments for the remote attitude control of spacecraft by charge
transfer, the relative motion dynamics must be modeled. There is no simple analytic solution for
the electrostatic interaction between charged conductors with generic geometries. Several options
exist for the numerical modeling of spacecraft charging and interactions, including finite element
methods, finite difference methods, boundary element methods, and Monte Carlo methods.26, 27

Each of these approaches, however, are too computationally expensive to allow for faster than real
time simulations of the electrostatically induced relative motion dynamics.

Simpler methods such as the point charge approximation and finite sphere model that have been
used for Coulomb charge control analysis in the past19, 28, 25 are limited to line-of-site forces and not
capable of predicting electrostatic torques. The recently developed Multi Sphere Model (MSM)20

uses a set of conductive spheres throughout the geometry of a spacecraft to capture the 3D elec-
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Figure 2. 3 sphere MSM cylinder and spherical spacecraft configuration.

The three sphere MSM approximation provides sufficient force and torque accuracy for the sep-
aration distances considered.20 All three conducting spheres are centered along the long axis of the
cylinder which provides a diagonal moment of inertia matrix and symmetric charging. These two
simplifications are crucial in the analysis presented here. The MSM geometric parameters used in
this analysis are shown in Table 1.

Table 1. MSM parameters for cylinder detumble system.

Parameter Value Units Description

d 15 m Object center-to-center separation
l 1.1569 m Outer sphere offset

Ra,Rc 0.5909 m Outer sphere radius
Rb 0.6512 m Central sphere radius

The cylinder in this study tumbles with three rotational degrees of freedom. Figure 2 presents
a planar view of the setup for clarity. The modeled control parameters are the separation distance
d of the mass centers and the controlled potentials φ1 and φ2 corresponding to the commanding
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spacecraft and cylinder respectively. The inertial coordinate system fixed to the controlled spherical
spacecraft has the y axis pointed along the relative distance vector, the z axis pointed up, and the
x axis completing a right-handed system. The cylinder has body fixed coordinates with b̂1 through
the long axis with b̂2 and b̂3 in the right handed transverse directions. The cylinder attitude is
characterized by a rotation about the inertial z axis θ, and a pitch angle defined as a positive b̂2
rotation. The rotation angle θ = 0 and the pitch angle ψ = 0 when the cylinder b̂1 axis is aligned
with the vector from the commanding spacecraft mass center to the cylinder mass center.

The electrostatic forces are determined by the charges residing on each sphere. These result
from the prescribed electric potentials, according to the self and mutual capacitance relationships in
Eq. (1), where kc = 8.99× 109 N·m2/C2 and qi is the charge of each sphere.22, 23

φi = kc
qi
Ri

+
m∑

j=1,j 6=i
kc
qj
ri,j

(1)

where Ri denotes the radius of the ith conducting sphere and ri,j denotes the vector between the ith

and jth conducting spheres. These relations can be represented in matrix form
φ1
φ2
...
φ2

 = kc


1/R1 1/ra 1/rb 1/rc
1/ra 1/R2,a 1/l 1/2l
1/rb 1/l 1/R2,b 1/l
1/rc 1/2l 1/l 1/R2,c



q1
qa
qb
qc

 (2)

Inverting the matrix multiplying the charge at a given instant in time produces the forces and torques
on the cylinder given by the summations

F 2 = kcq1

c∑
i=a

qi
r3i
ri (3)

L2 = kcq1

c∑
i=a

qi
r3i
r2,i × ri (4)

The controlling sphere and cylinder remain at a constant separation distance requiring a thrust-
ing force to counter-balance the net attractive or repulsive electrostatic forces on the commanding
spacecraft. The control development assumes the necessary thrust force is present and though the
system is moving in space the fixed relative distance assumes that the spacecraft can be considered
stationary for the control development and analysis.

ANALYTIC TORQUE DEVELOPMENT

The expression for torque in Eq. (4) provides an analytic torque expression. However, the square
matrix has size equivalent to the number of spheres and couples the control potential φ and attitude
information. The equilibrium states and stability of the system are more easily explored using an
analytic approximation of the MSM torque.
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One-Dimensional Representation

As shown by Reference 5, if the separation distance is sufficiently large, the potential and attitude
influence on the electrostatic torque can be separated as shown in Eq. (5) where θ represents a 1-D
attitude measure.

L = γf (φ) g (θ) (5)

The separation of the potential dependence function f(φ) and the orientation dependence function
g(θ) allows for a simplified analytic study in-place of the matrix inversion necessary in Eq. (2).
Without loss of generality, the non-cooperative cylinder has the same potential magnitude, that is
φ2 = |φ1|, and is assumed to be always positive.5 Thus, the voltage dependency function is set to:5

f (φ) = φ|φ| (6)

The orientation angle dependency explored by Reference 5 presents Eq. (7) as the analytic rep-
resentation. Reference 5 also demonstrates more complicated torque surfaces character at close
proximity due to induced charging properties. Implementation at a separation distance of d = 15m
accurately approximated the torque surface with a correlation ofR2 = 0.9998 and the tuned scaling
parameter γ = 2.234× 10−14.5

g(θ) = sin(2θ) (7)

Using the potential and orientation dependency functions in Eq. (5) provides a separable form base
function to approximate the MSM torque profile. Setting θ = 0 when the slender axis of the
cylinder is aligned with the inter-spacecraft vector allows for a 1-D spin rate control function f(φ)
to be developed.

Generalization for Attitude Coordinates

The control form presented in Eq. (5) and accompanying orientation angle dependency in Eq. (7)
are generalized for 3-D tumbling motion by Eq. (8) and general attitude coordinates σ.

L = γf (φ) g (σ) (8)

The induced charge effect of the MSM spheres dictates that the g(σ) function is dependent on sep-
aration distance. This study considers a fixed separation distance of d = 15 m that exceeds major
induced charging effect torque contributions. Assuming a fixed separation distance and surface po-
tential, Figure 3 illustrates the resulting electrostatic torques on the cylinder where the attitude is
parameterized using a 3-2-1 Euler angle sequence through θ, ψ, and a rotation about b̂1. Because of
the axi-symmetric shape of a cylinder and MSM sphere distribution, the torque will not depend on
the rotation about the first body axis b̂1. The torque profile estimate using the separable dependency
functions and corresponding error to the MSM prediction is shown in Figure 3. The torque function
is approximated. Clearly visible in Figure 3 are the equilibrium surfaces present when either yaw
or pitch achieves 0◦ or 90◦. The character of Figure 3 is symmetric and suggests a simpler general-
ization of the cylinder attitude coordinates. As stated earlier, the torque does not have a component
about the cylinder b̂1 axis. Therefore the torque axis and projection angle about the torque axis are
defined.

êL = b̂1 ×−r̂ (9)

Φ = cos−1
(
b̂1 · (−r̂)

)
(10)
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Figure 3. Normalized torque surface and corresponding error at a separation dis-
tance of d = 15 m for V1 = −30 kV and V2 = 30 kV .

where r̂ is the unit direction from the commanding spacecraft mass center to the tumbling body
mass center. The orientation dependency function assumes the form in Eq. (11).

g(σ) = sin(2Φ) (11)

The projection angle orientation dependency form captures the behavior previously studied by Ref-
erence 5 for the 1-D case. For example, if the pitch angle were zero, the projection angle would
be the rotation angle θ and the control collapses to the 1-D form. Implementation of the projection
angle formulation captures the torque surface in Figure 3 with a correlation of R2 = 0.9998 when
separated at d = 15 m. The MSM predicted torque surface is sensitive to separation distance, and
the fit quality provided by Eq. (11) decreases rapidly as the separation distance diminishes. The
sensitivity to separation distance is shown in Figure 4 where the MSM predicted torque is shown
for a separation distance of d = 15m and d = 2 m respectively. The change in torque surface
character is clearly visible in Figure 4 where the torques for the d = 15 m separation and d = 2.5
m separation distances are shown respectively. Evident in Figure 4, the torque surface deforms in
both profile at a fixed potential and the torque strength between the positive and negative potentials
as the separation distance is varied. To capture the variation in character, a more general orientation
dependency function is required.

Generalization of Orientation Dependency Function

The quality of the fit degrades as the separation distance decreases due to the induced charging
effects predicted by MSM but not by the analytic approximation in Eq. (8). The analytic form is
extended to

L = f (φ)

n∑
m=1

γmgm (σ) (12)

where n is the number of terms in the desired approximation and γm is the coefficient of the mth

term. The separable form, used to avoid matrix inversion of the MSM model, allows the summa-
tion of an infinite number of representative approximation functions to be used in equilibrium and
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Figure 4. MSM torque surfaces at a separation distances of d = 2.5 m and d = 15 m
for V1 = −30 kV and V2 = 30 kV .

Lyapunov analysis. Inclusion of additional terms in the analytic approximation enables more ac-
curate close proximity fits to the MSM torque representation. Greater quality in the approximation
fit provides more confidence in the stability analysis. Referring to Figure 3, the error plot can be
approximated by a scaled sin(4Φ). This suggests a Taylor series like approximation in Eq. (13).

n∑
m=1

γmgm (σ) =
n∑

m=1

γm sin (2mΦ) (13)

The γm terms are addressed in part by the following analysis. Applying the general expansion form
to the close proximity profiles in Figure 4 yields the improved approximation shown in Figure 5.
The profiles shown in Figure 5 are normalized about the max value. This removes the search for
scaling terms and more clearly exhibits fit quality improvement. Additional terms are included
separately for both the attractive torque case shown on the left, where f(φ) < 0, and the repulsive
case shown on the right, where f(φ) > 0. The two term approximation is explicitly:

g(σ) =

2∑
m=1

m!

d2(m−1)
sin 2mΦ (14)

The separation distance appears in the denominator as a “stiffness” like term. Therefore, as the
separation distance grows, the higher order terms tend towards zero. This stiffness formulation
increases the fit quality across the entire separation distance regime. While beneficial to have the
general form, only the first order term is necessary in the following analysis because the separation
distance is held fixed at d = 15 m. A separation distance of d = 15 m is considered beyond close
proximity and therefore falls within a more likely operation range.

CONSTANT POTENTIAL EQUILIBRIUM STATES

The following developments require that the function f(φ) in Eq. (12) be invertible and posses
the property f(φ)φ ≥ 0 enforced by Eq. (6) criteria.5 The three-dimensional rotational equations
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Figure 5. Additional terms in g(σ) approximation of MSM.

of motion are given by
Iω̇ + ω × Iω = L (15)

The equations of motion are re-cast by defining a projection angle principal coordinate system with
principal moments of inertia I = diag[Ia It It].

E = {b̂1, êL × b̂1, êL}

Noting that the moment of inertia about the torque axis is always perpendicular to b̂1, the simplified
generalized equations of motion assume the form in Eq. (16). Reduction of the three dimensional
rotational equations of motion to two scalar equations enables the control to only influence torques
around the cylinder’s transverse êL axis exclusively. Consistent with the assumption of an axi-
symmetric geometry, there exists no control authority in the b̂1 axis scalar equation because no
cross coupling is present.

Iaω̇1 = 0 (16a)

Itη̇ − Iaω1Φ̇ sin Φ = 0 (16b)

It

(
Φ̈ sin Φ− η2 cos Φ

sin2 Φ

)
+ Iaω1η = L (16c)

where Ia is the axial moment of inertia, It is the transverse moment of inertia, and

η ≡ −ω2(r̂ · b̂2)− ω3(r̂ · b̂3) (17a)

Φ̇ sin Φ = −ω2(r̂ · b̂3) + ω3(r̂ · b̂2) (17b)

L = −LêL = −f(φ) sin (2Φ) êL (17c)

The equilibrium conditions occur at points where the torque is zero which requires the sum of the
orientation dependency functions equating to zero. The system equilibrium states are present at
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projection angle orientations Φ = 2πn for n = 0, 1, 2, 3 given the form considered in Eq. (13).
Evident in the second scalar equation of motion, Eq. (16b), requires either ω1, Φ̇, or sin (Φ) to
be zero for η̇ to be zero. Study of the torque free Eq. (16c) provides insight into the equilibrium
conditions defined by torque free configurations and the conditions from Eq. (16b). Consider the 2
following orientation cases:

Case 1: First assume Φ = 0, that is the cylinder b̂1 axis is aligned with the negative inter-
spacecraft separation vector −r̂. Multiplying the torque free Eq. (16c) by sin2 Φ and inserting
Φ = 0 yields the following condition:

Itη
2 = 0→ η = 0 (18)

Given this condition, the only way to remain at this point is for η̇ = 0 and therefore Φ̇ = 0. This
configuration holds if both the projection angle, angle rate, and the perpendicular angle rate η all
equal zero. This configuration does not require that the spin about the b̂1 axis go to zero. The third
equation of motion clearly highlights the sin Φ = 0 singularity in the dynamics definitions. The
singularity results from the torque axis, described by Eq. (9), being undefined at this orientation.
The singular term, for linearized deviations in η behaves as 0/0 and the departure behavior is un-
clear. However, given the definition of the projection angle and the torque axis, any angular rate
perturbation away from the Φ = 0 equilibria enforces that the perturbation is about the torque axis
and therefore no η perturbation is possible and η = 0 is maintained. Inserting a small perturbation
in the projection angle and η = 0 demonstrates by Eq. (16c) a restoring attractive torque and a
divergent repulsive torque. The equilibrium point is locally stable if the commanding spacecraft
is repulsive, craft with opposite potential signs, whereas the equilibrium is locally unstable if the
torque is attractive, craft with same potential sign.

Case 2: Now assume that the cylinder is pitched to Φ = 90◦. Equilibrium in Eq. (16b) requires
that either Φ̇ = 0 or ω1 = 0. Simplifying Eq. (16c) at this configuration requires:

Iaω1η = 0→

{
ω1 6= 0 then η = 0

ω1 = 0 then η = const.
(19)

The equilibria conditions demonstrate that if any cross coupling from ω1 is present, then Φ̇ = 0 and
η = 0. Otherwise only the projection angle rate is controlled. The stability of this configuration
is studied by inserting perturbations in both η and Φ. Unlike the prior case, the torque axis is well
defined and therefore perturbations exclusively in η are possible. In the trivial case, where ω1 = 0,
the perturbation in η is not coupled and η increases by the perturbation to assume a new constant
value. This characterizes a neutrally stable configuration. The non-trivial case with ω1 coupling is
described by the following linearized equations:

It∆η̇ − Iaω1∆Φ̇ = 0 (20a)

It(∆Φ̈ + η2∆Φ) + Iaω1∆η = 2f(φ)∆Φ (20b)

Evaluation of Eq. (20) for positive ∆η demonstrates a negative Φ̈. The body transitions to a state of
tumble with exchange between η and Φ̇. The tumble endures torque and angular momentum loss in
both attractive and repulsive cases. Given a repulsive electrostatic torque, that is f(φ) > 0, drives
the system to the equilibrium condition and is locally stable. The attractive electrostatic torque is
destabilizing and drives the tumble away from the equilibrium configuration and is locally unsta-
ble. Given the cylinder’s symmetric properties, the presented cases fully describe all equilibrium
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orientations possible from the observation that a projection angle π/2 < Φ ≤ π is equivalent to the
orientations π − Φ.

FEEDBACK CONTROL DEVELOPMENT

The following feedback control development uses rotation rate control to reduce or eliminate the
cylinder’s tumbling motion. A fixed separation distance is maintained using the inertial thrusting
scheme described in Reference 5. The controller assumes the projection angle Φ and angle rate Φ̇
are measured and the commanding spacecraft potential φ1 is the control variable.5 The feedback
control f(φ1) is used:

f(φ1) = −sgn

(
n∑

m=1

gm(σ)

)
h(ασ̇) (21)

where α > 0 is a constant feedback gain and the function h is chosen for stability such that:5

h(x)x > 0 if x 6= 0 (22)

Tumble rates that tend toward infinity necessitate a limit on physical potential. The following h
function proposed by Reference 5 smoothly limits, or saturates, the control at a maximum potential.

h(ασ̇) = f(φmax)
arctan(ασ̇)

π/2
(23)

that is

lim
σ̇→+∞

f(φ1) =


f(φmax) if

n∑
m=1

gm(σ) 6= 0

0 if
n∑

m=1
gm(σ) = 0

(24)

Stability Analysis

The stability of the proposed feedback control law in Eq. (21) is explored using a fundamental
positive definite candidate Lyapunov function in Eq. (25). The proposed rate control arrests the
rotational motion about the transverse cylinder axis and does not seek to arrest the rotational motion
about the axi-symmetric body axis nor achieve a specific spacecraft orientation.

V =
1

2
ωT Iω (25)

Taking the time derivative of the candidate Lyapunov function with no torques around the b̂1 axis
produces

V̇ = ωTL = ω2L2 + ω3L3 (26)

Applying the definitions presented in Eq (17), the Lyapunov function derivative assumes the form

V̇ = −L
(
−Φ̇ sin Φ

)
= f(φ1)Φ̇ sin Φ

n∑
m=1

γm sin (2mΦ) (27)

Substituting in the proposed control law presented of Eq. (21) into the Lyapunov derivative in
Eq. (27) yields the final form

V̇ = −sgn

(
n∑

m=1

gm(Φ)

)
h(αΦ̇)Φ̇ sin Φ ≤ 0 (28)
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The V̇ expression is globally negative semi-definite as the orientation dependence summation is
positive semi-definite and the h function is positive definite and sin(Φ) is positive semi-definite in
the range considered. The symmetry of this treatment enables the projection angle to be bounded
by −π/2 < Φ ≤ π/2. The bound is justified by the equivalence between a projection angle of
π/2 < Φ ≤ π and a redefined b̂1 to align with the approaching slender axis with −π/2 < Φ ≤ 0.

The formulation in Eq. (21) is still a valid control formulation if only positive or negative po-
tential, mono-polarity, is available for the commanding spacecraft. As Reference 5 discusses, the
mono-polarity case does not impact the arguments for stability. Implementation of a mono-polarity
controller would determine the sign of Eq. (21) to retain only the desired sign and zero-out any
opposing sign command.

NUMERICAL SIMULATION

A numerical simulation is performed to verify the control scheme developed. Specifically, a rate-
control in deep space with a fixed separation distance is implemented. The fixed separation distance
is maintained using inertial thrusting. The MSM model parameters are presented in Table 1 and the
simulation parameters are shown in Table 2.

Table 2. Simulation parameters for cylinder detumble system.

Parameter Value Units Description

ρ 100 kg/m3 Object densities
m1 52.4 kg Commanding Sphere mass
m2 235.6 kg Cylinder mass
Ia 29.5 kg·m2 Cylinder axial moment of inertia
It 191.4 kg·m2 Cylinder transverse moment of inertia
ω0 0.2 deg/sec Initial cylinder tumble rate
α 5× 104 - Gain in h function

φmax 20 kV Max voltage in h function

First consider the cylinder yawed by θ = 45◦ and with zero pitch with body frame angular
velocities ω = [0.0063, 0.1971, 0.0338] deg/sec. While the angular velocity of the body is below
the MDA maximum of 1◦/sec, using a magnitude of 0.2◦/sec allows visualization of the long term
behavior on a shorter time scale. The numerical simulation using the prescribed initial conditions is
shown in Figure 6.

The simulation in Figure 6 converges to the cross-track equilibrium state shown in Figure 6(b).
As expected for a fixed separation distance without nominal tugging or pushing, Figure 6(a) shows
that the commanded potential goes to the nominal zero value. The equilibrium analysis about this
configuration suggested that the value of η remain constant. The bounded angular velocity oscilla-
tions in Figure 6(c) indicate that η is constant in a torque free configuration. The convergence to the
cross-track equilibrium state shown in Figure 6 lacks electrostatic control authority. Repositioning
the commanding spacecraft to the plane of rotation allows complete control authority. This case is
explored in Figure 7.

The simulation in Figure 7 converges to Φ = 0. The controller first removes the majority of an-
gular velocity and tends towards the constant magnitude of ω1. The controller maintains a slightly
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Figure 6. Numerical simulation with initial conditions: |ω| = 0.2, d = 15 m, Φ0 =
45◦, with Vmax = 20 kV .

positive potential due to slight oscillation in the angular velocities that continues to drive the pro-
jection angle to the torque free attitude. The decreasing magnitude of the command potential is
not discernible in Figure 7(a), however the magnitude goes to zero as the projection angle goes
to zero. The initial angular velocity presented is not large in magnitude, however it is large given
the small commanding spacecraft dimensions and large separation distance. The presented control
formulation seeks to arrest only the projection angle rate. Inclusion of a coast phase or spacecraft
reorientation could achieve the desired projection angle after the projection angle rate is zero. The
numerical simulations presented in Figure 6 and Figure 7 demonstrate the control implementation
for three dimensional electrostatic detumble that can remove angular momentum from large orbital
objects within days.

CONCLUSION

The rate-based electrostatic attitude control is investigated for the three-dimensional tumbling
motion of a representative cylindrical body. The electrostatic control authority at separation dis-
tances on the order of 3-4 craft radii demonstrates that the tumbling rotational motion is greatly
reduced. More rapid detumble is possible with reduced separation distance. The control scheme
utilizes a general approximation of the multi-sphere modeling method to verify closed-loop stabil-
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Figure 7. Numerical simulation using previous initial conditions with Φ0 = 0◦.

ity. The general approximation generalizes previous work and enables stability analysis for close-
proximity distances. The control scheme is analytically proven to arrest the tumbling motion and
settle in a stable torque equilibrium orientation. The numerical simulation also highlights the move-
ment towards specific orientations dependent on initial orientation. Future work will analyze the
initial orientation dependencies, three-dimensional nominal tugging or pushing, control coast seg-
ments, and investigate the torques on more complex geometries.
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