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MODULAR DYNAMIC MODELING OF HINGED SOLAR PANEL
DEPLOYMENTS

Galen Bascom* and Hanspeter Schaub†

Prior multi-body dynamics work using the back-substitution method is expanded
to apply to deployable spacecraft panel configurations. Earlier work focused on
studying first order flexing of solar panels about a fixed angle. This study mod-
els deployable structures which are allowed to flex about a nominal, time-varying
deployment angle. External motor torques are included in the dynamical formu-
lation to create a physics-based deployable panel simulation. The full nonlinear
coupling is retained while providing an implementable, modular software solution
using the back-substitution method. The Basilisk simulation framework is used to
illustrate the implementation, with numerical results are shown for both nominal
and off-nominal deployments.

INTRODUCTION

While the problem of modeling solar array deployment has garnered research interest for a long
time, the need for implementable software solutions has been highlighted.1 Fully representing a
spacecraft with deployable solar panels as a rigid body with flexible appendages requires a set of
unwieldy, coupled non-linear equations. Certain simplifying approaches, such as assuming that the
coupling with the translational motion is negligible or limiting the effect to a single plane of mo-
tion, compromise the underlying dynamics. Such assumptions make the problem more analytically
tractable but may be insufficiently general or degrade performance unacceptably.

An implementable model for simulating a deployable solar panel about a single fixed hinge is
introduced here. While solar arrays come in many different configurations, this model covers a range
of useful cases and serves as a starting point for further analysis. In addition to studying nominal
cases, this work also demonstrates one way of modeling off-nominal deployments. Many recorded
spacecraft anomalies are because of deployment faults or failures,2 making these capabilities useful.

Expanding on previous work on deployable hinged panels, a back-substitution method is used
to make the simulation both fast and modular.3, 4 Making the often-satisfied assumption that each
component of the spacecraft is attached to a rigid hub yields a system mass matrix that, while not
diagonal, has a predictable structure where the coupling between variables happens through the
hub. The method exploits that structure, solving first for the spacecraft rigid-body translational and
rotational accelerations, and then substituting those values back in to solve for the other second-
order state derivatives.
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The novelty in this work is that it does not assume a fixed reference angle but instead introduces a
time-varying reference, which allows for a wider range of scenarios including deployments demon-
strating both nominal and off-nominal behavior. A deployment profiler, panel angle sensor, and
panel motor are added to facilitate modeling deployment scenarios. Moreover, due to the modu-
lar structure of the proposed software implementation, it is straightforward to add other features,
for example the solar panel power. This makes it possible to simulate complex, linked behaviors
with relative ease. This paper uses the proposed solution as implemented in the Basilisk software
architecture for both nominal and off-nominal deployments, and the resulting numerical results are
presented.

PROBLEM STATEMENT

In order to develop the equations of motion to integrate, the relevant coordinate frames are first
defined as seen in Figure 1. The description is general, allowing for the panel to be placed in any
configuration relative to the spacecraft, and it easily extended to multiple panels. The assumption
is that the spacecraft hub as well as the panels individually are rigid and connected by hinge with
a single degree of freedom. The hinge is modeled as a spring with torsional stiffness coefficient k
and viscous damping coefficient c.

Figure 1. Reference frame definitions for deployable hinged panel problem.

The relevant coordinate frames are as follows. The inertial reference frame is N :{n̂1, n̂2, n̂3}
with an origin at point N . The body (hub) fixed frame is B:{b̂1, b̂2, b̂3} with an origin at body-fixed
point B. Although it is sometimes convenient to also define a separate point for the body-fixed hub
center of mass, the simplifying assumption is made that the center of mass of the hub is coincident
with point B. The hinge frame, with its origin at the hinge point H , is H:{ĥ1, ĥ2, ĥ3}. The hinge
frame is fixed relative to the body.

The panel frame S:{ŝ1, ŝ2, ŝ3} has its origin at point H , and the panel center of mass S lies along
ŝ1 such that rS/H = −dŝ1, where d is a fixed distance. The panel unit vector ŝ2 is defined so that
the rotation angle θ about the ŝ2 axis relative to the fixed hinge frame is positive by the right-hand
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rule. Finally, ŝ3 completes the right-handed set. The S frame is assumed to yield a diagonal inertia
mass matrix for the panel.

The last frame is the reference frame R:{r̂1, r̂2, r̂3}, again with its origin at H . Just as S differs
from H by a rotation θ along ĥ2, R differs from H by a rotation along ĥ2, this time by an angle θr.
For a deployed structure, θr would be fixed, but during deployment or other articulation it would be
time-varying. The introduction of this new coordinate frame adds the new quantity ∆θ = θ − θr.
The hinge stiffness and viscous friction are defined not relative to θ, as in prior work, but instead
relative to ∆θ.

DERIVATION OF EQUATIONS OF MOTION

The equations of motion are defined using a back-substitution method previously described by
Allard and Schaub.4, 5 For a more complete derivation, those prior works should be referenced.
The salient equations and steps are shown here, with differences identified. The translational and
rotational equations, as well as the equations for the solar panel motion, are derived using Newtonian
and Eulerian methods. As for notation, the inertial derivative of a vector v is v̇, while the body-
frame derivative is denoted v′. The cross-product equivalent matrix is denoted [ṽ].

Translational Equations of Motion

The center of mass of the spacecraft, by Newton’s second law, follows

F ext = mscr̈C/N (1)

where F ext is the sum of the external forces acting on the system, msc is the total spacecraft mass,
and rC/N is the position vector of the spacecraft center of mass point C relative to N . Similar
notation is used for other position, velocity, and acceleration vectors. The translational equations of
motion reduce to the equation:

mscr̈B/N −mscrC/B × ω̇B/N +mspdŝ3θ̈ =

F ext − 2mscωB/N × r′C/B −mscωB/N × (ωB/N × rC/B)−mspdθ̇
2ŝ1

(2)

The angular velocity vector of frame B relative to frame N is ωB/N .

Rotational Equations of Motion

The starting point for deriving the rotational equations of motion is Euler’s equation:

Ḣsc,B = LB +mscr̈B/N × rC/B (3)

The relevant quantities are Ḣsc,B , the inertial derivative of the angular momentum of the spacecraft,
as well as LB , the torque about point B. The final term is included because point B is not coincident
with C. The angular momentum of the spacecraft about B is:

Hsc,B = [Ihub,B]ωB/N + [Isp,S ]ωB/N + θ̇IS2 ŝ2 +msprS/B × ṙS/B (4)

The quantity [Ihub,B] is the moment of inertia of the hub about point B. Likewise [Isp,S ] is the mo-
ment of inertia of the panel about point S, and IS2 is the inertia of the panel about S (corresponding
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to a rotation about ŝ2) from the diagonal inertia matrix. The inertial time derivative is evaluated and
relevant substitutions made to yield the form:

mscrC/B × r̈B/N + [Isc,B]ω̇B/N + (IS2 ŝ2 +mspdrS/B × ŝ3)θ̈ = −ωB/N × [Isc,B]ωB/N−
[I ′sc,B]ωB/N − θ̇ωB/N × (IS2 ŝ2 +mspdrS/B × ŝ3) +mspdθ̇

2rS/B × ŝ1 +LB

(5)

The quantity [Isc,B] is the moment of inertia of the full spacecraft about point B.

Panel Equation of Motion

The torque LH acting on the panel about point H can be defined as:

LH = LH1 ŝ1 + LH2 ŝ2 + LH3 ŝ3 = LH2 ŝ2 (6)

The component torques L1 and L3 are ignored for these purposes, as the only degree of freedom is
rotation about ŝ2. The remaining torque can be written as

LH2 = −k∆θ − c∆θ̇ + u (7)

where u is the motor torque acting on the panel. This is a departure from previous work,5 where the
equation was relative only to θ.

The inertial angular velocity of the panel is

ωS/N = ωS/B + ωB/N = θ̇ŝ2 + ωS1 ŝ1 + ωS2 ŝ2 + ωS3 ŝ3 (8)

where the last three terms are defined to be the components of ωB/N in the S frame.

The relevant Euler equation of motion is:

IS2(ω̇S2 + θ̈) = −(IS1 − IS3)ωS1ωS3 + LS2 (9)

with LS = LS1 ŝ1 + LS2 ŝ2 + LS3 ŝ3 the torque on the panel about its center of mass, ISi the panel
moments of inertia about the three corresponding principal axes.

To find LS2 , note that

LS = LH − rS/H ×mspr̈S/N = LH + dŝ1 ×mspr̈S/N (10)

Following again the derivation in prior work,5 with the notable difference that the hinge stiffness
and viscous damping are computed relative to the reference angle, the final panel equation of motion
is:

θ̈ = (IS2 +mspd
2)−1(−mspdŝ

T
2 r̈B/N − [(IS2 +mspd

2)ŝT2 −mspdŝ
T
3 ][r̃H/B]ω̇B/N

−k∆θ − c∆θ̇ + u+ (IS3 − IS1 +mspd
2)ωS1ωS3 −mspdŝ

T
3 [ω̃B/N ][ω̃B/N ]rH/B)

(11)

While it might be expected to see ∆θ̈ in the final equation, the hinge torque depends only on
the angular position and velocity, so those are the only quantities for which the introduction of the
reference angle and the redefinition of the hinge model make a difference.
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Backsubstitution Method

The panel equation of motion can be simplified to the form

θ̈ = aT
θ r̈B/N + bTθ ω̇B/N + cθ (12)

by defining the corresponding quantities:

aθ = −
mspd

IS2 +mspd2
ŝ3 (13)

bθ = − 1

IS2 +mspd2
[(IS2 +mspd

2)ŝ2 +mspd[r̃H/B]ŝ3] (14)

cθ =
1

IS2 +mspd2
(−k∆θ−c∆θ̇+u+(IS3−IS1+mspd

2)ωS1ωS3−mspdŝ
T
3 [ω̃B/N ][ω̃B/N ]rH/B)

(15)
By making the appropriate substitutions into Eqs. (2) and (5), the coupled translational and rota-
tional hub equations of motion can be written in the form:[

[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vt
vr

]
(16)

To generate this compact, tractable form, newly defined variables are:

[A] = msc[I3×3] +mspdŝ3a
T
θ (17)

[B] = −msc[r̃C/B] +mspdŝ3b
T
θ (18)

[C] = msc[r̃C/B] + (IS2 ŝ2 +mspd[r̃S/B]ŝ3)a
T
θ (19)

[D] = [Isc,B] + (IS2 ŝ2 +mspd[r̃S/B]ŝ3)b
T
θ (20)

vt = F ext − 2mscωB/N × r′C/B −mscωB/N × (ωB/N × rC/B)− (mspdθ̇
2ŝ1 +mspdcθŝ3) (21)

vr = −(θ̇[ω̃B/N ] + cθ[I3×3])(IS2 ŝ2 +mspdrS/B × ŝ3) +mspdθ̇
2rS/B × ŝ1

−ωB/N × [Isc,B]ωB/N − [I ′sc,B]ωB/N +LB

(22)

Using the Schur complement of the partitioned matrix, solving this system of linear equations is a
matter of solving:

ω̇B/N = ([D]− [C][A]−1[B])−1(vr − [C][A]−1vt) (23)

r̈B/N = [A]−1(vt − [B]ω̇B/N ) (24)

Finally, these results are in turn substituted back in to the Eq. (12) to solve for θ̈. This method
has been shown to be a computationally efficient way of simulating complex multibody systems.4

The modest changes to the hinged spring model expand this useful framework to permit deployment
angles with a time-varying reference.
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SOFTWARE IMPLEMENTATION

Many approaches could be used to simulate the dynamics represented by the above equations of
motion. The selected method is by no means the only way, but it does represent a convenient one.
Basilisk is a flight-proven software architecture that uses the back-substitution method to achieve
good computational performance while retaining high fidelity.3 The back-substitution method lends
itself to a modular approach, where the spacecraft and simulation are assembled from a wide range
of components such reaction wheels, fuel tanks, and sensors. This enables customizable and scal-
able dynamical modeling of intricate systems. The complex dynamics do not need to be rederived
each time, as each individual set of state variables (for example the θ and θ̇ from a hinged panel)
that affect the dynamics can be isolated to determine that object’s individual contributions to the
[A], [B], [C], and [D] matrices. Similar work demonstrates these methods as applied to reaction
wheels with jitter and fuel slosh.6, 7

This software architecture was modified not only to reflect the changed dynamics due to the
introduced reference angle, but also to permit practical deployments using those reference angles.
A hinge angle sensor, deployment profiler, and hinge motor were added. The sensor incorporates
simple Gaussian noise based on defined parameters. The deployment profiler permits a simple
linear deployment. The user sets the angle and time for the start and end of deployment, and the
profiler adjusts the reference frame linearly within that time frame. In the future, a more complicated
profiler—for example, one that outputs a smoother profile—could be developed.

Finally, the hinge motor implements a control law to update the torque u on the panel. The control
law used is:

u = −K∆θ − P∆θ̇ (25)

The variable K is the proportional gain, while P is the derivative gain. A proportional-derivative
type control law was chosen for convenience without a detailed analysis of its properties. It may
be possible to improve upon this control law depending on the desired characteristics of the hinge
motor. As it stands, this motor essentially has the effect of amplifying the natural dynamics of the
hinge, as can be seen by substituting it in to Eq. (7).

Another advantage of the Basilisk implementation is that, because the panel object outputs its
full state, including its position and attitude relative to the inertial frame, it is a simple matter of
connecting that state message to other modules to allow components such as solar power modules
and coarse sun sensors to attach to the panel and be affected by its dynamics. For example, a simple
setup might include the following lines:

from Basilisk.simulation import hingedRigidBodyStateEffector
from Basilisk.simulation import simpleSolarPanel

# create panel structure
panel = hingedRigidBodyStateEffector.HingedRigidBodyStateEffector()

# create solar cells
solarPanel = simpleSolarPanel.SimpleSolarPanel()

# subscribe messages
solarPanel.stateInMsg.subscribeTo(panel.hingedRigidBodyConfigLogOutMsg)
solarPanel.sunInMsg.subscribeTo(sunStateMsg)
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Other aspects of the code, including setting the parameters and creating the sun state message, are
omitted for brevity. Nonetheless, this short example demonstrates the ease of scripting a nontrivial
simulation with complex, layered behaviors.

Figure 2. Simulation modules for panel deployment demonstration.

Figure 2 diagrams the Basilisk modules used in the simulation scenario. Each block is a module,
and the arrows represent messaging pathways.

SIMULATION RESULTS

The simulation involved a spacecraft pointing at the sun from a distance of 1 AU. The initial
attitude was set to the inertial frame attitude with a zero initial body rate. A panel attached to the
rigid hub (with a hinge frame aligned with the body frame) was deployed. No noise was added to the
panel sensor and instead the panel state was passed directly to the motor module. The simulation
first demonstrates a full deployment from θr = −π/2 to θr = 0, and it also shows where the
panel gets stuck at θr = −π/4 (the off-nominal deployment). This was implemented simply by
changing the profiler values correspondingly, while other types of deployment anomaly might be
implemented differently. The solar panel power module connected to the module also shows the
difference in power output.

Parameters for the individual modules were chosen to demonstrate the operation of the modules
without necessarily being designed to be realistic. Those parameters are summarized in Table 1.

Figure 3. Reference panel angle and angle rate versus time for the nominal case.
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Table 1. Parameters used in solar panel deployment simulation.

Parameter Value Units

Simulation time step 0.01 s
Spacecraft hub mass mhub 750.0 kg

Spacecraft hub inertia [Ihub,B ]

[
900.0 0.0 0.0
0.0 800.0 0.0
0.0 0.0 600.0

]
kg ·m2

Panel mass msp 100.0 kg

Panel inertia [Isp,S ]

[
100.0 0.0 0.0
0.0 50.0 0.0
0.0 0.0 50.0

]
kg ·m2

Panel distance to center of mass d 1.5 m
Panel torsional stiffness coefficient k 200.0 N ·m/rad
Panel viscous damping coefficient c 20.0 N ·m · s/rad
Panel initial angle −π/2 rad
Profiler start time 5.0 s
Profiler end time 85.0 (nom) 45.0 (off-nom) s
Profiler start θr −π/2 rad
Profiler end θr 0.0 (nom) −π/4 (off-nom) rad
Motor proportional gain K 100.0 N ·m/rad
Motor derivative gain P 10.0 N ·m · s/rad
Solar cell normal direction [0.0 0.0 1.0]
Solar cell area 2.0 m2

Solar cell efficiency 0.9

Figure 4. Actual panel angle and angle rate versus time for nominal case.

For the nominal case, the linear profile is as expected, with the panel deployment starting at
t = 5s and ending at t = 85s. The reference angle varies linearly between π/2 and 0 over that
stretch, and it remains 0 afterwards. The actual panel angle naturally does not follow this profile
perfectly. Due to the panel dynamics, oscillations appear about the varying reference angle.
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Figure 5. Attitude in MRPs versus time for the nominal case.

Figure 6. Body-frame body rates ωB/N versus time for the nominal case.

The body frame rate and attitude show the coupled effect of the solar panel deployment on the
hub attitude. As the panel deploys, a corresponding body rate modestly changes the angle of the
reference frame B. The attitude is presented in terms of modified Rodrigues parameters (MRPs).

Figure 7. Solar panel power versus time for the nominal case.

As the solar panel power plot shows, the decreasing angle between the solar panel unit normal
and the vector pointing from the spacecraft towards the sun also increases the power generated by
the solar panel, as affected by the panel oscillations. This is as expected, and it reveals the usefulness
of simply linking in the structural panel state message in order to provide the same motion to the
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power generation module.

Figure 8. Actual panel angle and angle rate versus time for the off-nominal case.

Figure 9. Solar panel power versus time for the off-nominal case.

For the off-nominal case, where the deployment gets “stuck” halfway through, the oscillations
are still present but with a shorter deployment time, The final panel angle is lower, and the final
power output is also significantly reduced.

In order to verify correct operation of the simulation, it is useful to evaluate the orbital and rota-
tional angular momenta and energies. Those quantities are presented for the nominal deployment
case.

Figure 10. Magnitude of the orbital angular momentum versus time.
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Figure 11. Orbital energy versus time.

Figure 12. Magnitude of the rotational angular momentum versus time.

Figure 13. Rotational energy versus time.

The orbital energy and angular momentum are effectively untouched by the deployment of the
panel. Similarly, the rotational angular momentum is effectively negligible. Because the torque
is internal, it is expected that the rotational angular momentum should stay zero. In contrast, the
rotational energy is not expected to be conserved throughout the motion. A system at rest that begins
deploying its panels has nonzero rotational energy, with contributions coming from the moving
panel, the moving hub, and the potential energy term k(∆θ)2.
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CONCLUSION

This work extends previous work on hinged rigid panels attached to a rigid hub to permit deploy-
ments. While many different implementations are possible, the chosen implementation is flexible
and modular, permitting a wide array of configurations that can be easily assembled from the com-
ponents. The numerical simulations show the oscillations have changed to be around the reference
angle over the course of a deployment, and the off-nominal deployment is shown to have a reduced
power output. Future work will improve upon the simple profiler and motor modules as well as
considering more complex deployable structures beyond rigid panels with a single hinge.
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