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The relative motion about 4179 Toutatis is studied in order to investi-
gate the feasibility of formation flying as an alternative concept for fu-
ture asteroid exploration missions. In particular, the existence of quasi-
frozen orbits about slowly rotating bodies1 allows to compute families
of periodic orbits in the body-fixed frame of the asteroid. Since these
periodic orbits are of the centerˆcenter type, quasi-periodic invari-
ant tori are numerically calculated via Koleman’s surface of sections
approach and used to initialize spacecraft formations about the cen-
tral body.2 Numerical simulations show that the resulting in-plane and
out-of-plane relative trajectories remain bounded over long time spans;
i.e., more than 30 days.

INTRODUCTION

In this thriving era for small bodies exploration, it may be interesting to study the
relative motion of satellites flying in a formation about asteroids or comets. Such a
concept is not novel and has already been proposed as a potential benefit for several
asteroid mitigation strategies. For instance, Maddock and Vasile considered formations
of solar concentrators to deflect hazardeous Nearh Earth Asteroids (NEA) by surface
ablation.3 Alternatively, Gong et al. proved the reliability of solar-sail formations in
displaced orbits as effective and powerful gravity tractors.4

A common denominator in the literature, however, is that the gravitational attraction
of the asteroid is usually neglected or oversimplified. Both Gong4 and Vasile5 approx-
imate the gravitational pull excerted by the central body via a point-mass gravity field.
Only recently, Foster et al. considered multiple gravity tractors in a high-order spher-
ical harmonics gravity field, but instead of designing cost-free relative trajectories, the

˚Graduate Research Assistant, Department of Aerospace Engineering Sciences, University of Colorado
Boulder, 80309 Boulder, CO. mail: nicola.baresi@colorado.edu

:A. Richard Seebass Endowed Chair Professor, Department of Aerospace Engineering Sciences, Univer-
sity of Colorado Boulder, 80309 Boulder, CO. mail: scheeres@colorado.edu

;Professor, Department of Aerospace Engineering Sciences, University of Colorado Boulder, 80309 Boul-
der, CO. mail: hanspeter.schaub@colorado.edu

1



authors were focused on controlling the satellites at fixed locations with respect to the
Sun-asteroid rotating frame to maximize the effects of their proposed deflection strat-
egy.6 Accordingly, passive relative orbits in the proximity of small bodies are yet to be
found and described.

In this paper, a systematic approach to establish bounded relative motion about slowly
rotating tri-axial ellipsoids is presented. As a case study, a chief and a deputy spacecraft
are considered while flying in a formation about 4179 Toutatis, a slowly rotating aster-
oid that was flown-by China’s Chang’e 2 spacecraft in December 2012.7 Because of the
existence of quasi-frozen orbits in the body-fixed frame of the asteroid,1 the secular evo-
lution of the mean orbit elements of the satellites can be studied via Lagrange Planetary
Equations.10 Moreover, first-order bounded relative motion conditions can be derived by
matching the averaged drift rates due to the nonspherical shape of the central body.8 As
these bounded relative motion conditions are based on mean orbit element differences,
the applicability of using a first-order mean-to-osculating orbit element mapping for
spacecraft formations about Toutatis is also investigated and used to motivate additional
numerical analyses. Specifically, stable periodic orbits are computed starting from the
output of the mean-to-osculating orbit element mapping and using a Poincaré map be-
tween consecutive surface of section crossings.9 Then, Koleman’s method is applied to
extend the center manifolds beyond the linear regime, and to compute quasi-periodic
orbits that foliate two dimensional invariant tori that surround the original periodic or-
bit.2 Finally, the relative motion between satellites initialized on the quasi-periodic tori
as well as on the computed periodic orbit is studied. In particular, numerical simulations
investigate the long-term behaviour of the relative motion and assess the robustness of
the derived initial conditions while taking into account unmodeled forces such as solar
radiation pressure and third body attraction.

BOUNDED RELATIVE ORBIT CONDITIONS

According to Reference 9, the majority of the perturbations felt by mass particles
about asteroids are due to the second degree and order gravity field. Thus, for pre-
liminary Formation Flying mission analyses, it is possible to consider the gravitational
potential as given by

U “ µ

r

"
1 `

´
r0

r

¯2
„
C20

ˆ
3

2

sin

2
� ´ 1

2

˙
´ 3C22 cos p2�q

`
sin

2
� ´ 1

˘⇢*
, (1)

where µ is the gravitational parameter of the central body, r is the distance of the satellite
from the center of the asteroid, � and � are its latitude and longitude with respect to the
first principal axis, r0 is the scale factor, and C20 “ ´J2 and C22 are respectively the
second zonal and second-degree second-order spherical harmonics coefficients.
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Furthermore, by definition

sin � “ sin i sin u, (2a)

tan� “ sin⌦R cos u ` cos⌦R sin u cos i

cos⌦R cos u ´ sin⌦R sin u cos i

, (2b)

where i is the inclination of the spacecraft, u “ ! ` f is the argument of latitude,
⌦R “ ⌦´!T t is the longitude of the ascending node with respect to the rotating body-
fixed frame of the asteroid, and !T is the spin rate of the central body. Therefore, it is
possible to consider the averaged perturbing function

¯

R “ µ r

2
0

2 a

3 p1 ´ e

2q3{2

„
C20

ˆ
3

2

sin

2
i ´ 1

˙
´ 3C22 sin

2
i cos p2⌦Rq

⇢
(3)

and investigate the evolution of the spacecraft mean orbit elements with Lagrange Plan-
etary Equations.10

It turns out that for a very slow rotator such as 4179 Toutatis (PT “ 2 ⇡{!T » 5.43

days) the mean orbital element rates can be rewritten as1;8

a

1 “ 0, (4a)
e

1 “ 0, (4b)

i

1 “ 3C22 sin i sin p2⌦Rq
⌘

4
L

7
, (4c)

⌦

1
R “ 3 cos i pC20 ` 2C22 cos p2⌦Rqq

2 ⌘

4
L

7
´ !T

n0
, (4d)

!

1 “ ´15 cos p2iq pC20 ` 2C22 cos p2⌦Rqq ` 9C20 ´ 6C22 cos p2⌦Rq
8 ⌘

4
L

7
, (4e)

M

1 “ 1

L

3
` 9 sin

2
i pC20 ` 2C22 cos p2⌦Rqq ´ 6C20

4 ⌘

3
L

7
, (4f)

where

p¨q1 “ 1

n0

d
d t

, (5a)

n0 “
b
µ{r30, (5b)

⌘ “
?
1 ´ e

2
, (5c)

L “
a
a{r0. (5d)

Accordingly, the semi-major axis and the eccentricity are constant on average, whereas
the inclination, body-fixed longitude of ascending node, argument of periapse, and mean
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anomaly vary with time depending on a, e, i, and ⌦R. This may become an issue as the
(4) are derived assuming that the orbit elements of the spacecraft can be regarded as
constant over one orbital period. For motion about small bodies, this is hardly true
unless P †† PT , where P is the orbital period of the spacecraft and PT “ 2 ⇡{!T .
In this case, both the mean inclination and body-fixed longitude of the ascending node
rates can be nulliefied by imposing the quasi-frozen orbit conditions derived by Hu and
Scheeres:1

⌦R “ ˘⇡{2, (6a)
cos i “ ´!T {B, (6b)

where

B “ 3n

2 p

2
r2C22 ´ C20s r20. (7)

Then, Eq. (4) becomes a reliable set of equations that can be used to infer second-order
second-degree bounded relative motion conditions.

From now on, a, e, i, ⌦R, !, and M will be referred to as the mean orbit elements
of the chief spacecraft, whereas ad, ed, id, ⌦R,d, !d, and Md will be used to indicate the
mean orbit elements of the deputy. We will also refer to �i1, �⌦1

R, �!1, and �M 1 as the
first variations of i1

d ´ i

1, ⌦1
R,d ´ ⌦

1
R, !1

d ´ !

1, and M

1
d ´ M

1 respectively.

It can immediately be noted that �i1, �⌦1
R, �!1, and �M 1 would vanish if Ld “ L,

⌘d “ ⌘, id “ i, and ⌦R,d “ ⌦R (in-plane formations). Such a selection would guar-
antee bounded relative motion but would not leave much freedom in the design of the
relative trajectory. The same happen whenever the chief and the deputy are initialized
with the same set of mean orbit elements, except for the mean anomaly at epoch, i.e.,
Md ‰ M (Leader-Follower formations). Alternatively, following the derivation of the
J2-invariant relationships,8 one could look at the first variation of the mean argument of
latitude, i.e., ✓M “ M `!, and try to nullify �✓1

M “ �M

1 ` �!

1 instead of (4e) and (4f).
Thus, the more general second-order second-degree bounded relative orbit relationships
would be given by

�i

1 “ Bi1

BL �L ` Bi1

B⌘ �⌘ ` Bi1

Bi �i ` Bi1

B⌦R

�⌦R “ 0, (8a)

�⌦

1
R “ B⌦1

R

BL �L ` B⌦1
R

B⌘ �⌘ ` B⌦1
R

Bi �i ` B⌦1
R

B⌦R

�⌦R “ 0, (8b)

�✓

1
M “ B✓1

M

BL �L ` B✓1
M

B⌘ �⌘ ` B✓1
M

Bi �i ` B✓1
M

B⌦R

�⌦R “ 0. (8c)
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From Equations (8a) and (8b), it follows that

C22 sin p2⌦Rq r⌘ L cos i �i ´ sin i p4L �⌘ ` 7 ⌘ �Lqs
`2C22 ⌘ L sin i cos p2⌦Rq �⌦R “ 0, (9a)

rC20 ` 2C22 cos p2⌦Rqs rcos i p4L �⌘ ` 7 ⌘ �Lq ` �i⌘ L sin is
`4C22 ⌘ L cos i sin p2⌦Rq �⌦R “ 0, (9b)

which, when evaluated at the quasi-frozen orbit conditions (6a)-(6b), simplify in

´ 2

B

C22 !T ⌘ L� �⌦R “ 0, (10a)

´7 ⌘ �L ´ 4L �⌘ ` ⌘ L� �i “ 0, (10b)

with
� “

b
pB{!T q2 ´ 1. (11)

Consequently, in order to satisfy the bounded relative orbit conditions (8a)–(8c), �⌦R

must always be equal to zero, i.e., ⌦R,d “ ⌦R. Furthermore, substituting Eq. (10a) and
(10b) into Eq. (8c) yields

�i “ B

2 p7C20 ´ 42C22 ` 16 ⌘

3
L

4q ´ 21!

2
T pC20 ´ 2C22q

B

2 r7 p⌘ ` 1q pC20 ´ 6C22q ` 4 ⌘

4
L

4s ` 7!

2
T p3 ⌘ ` 5q pC20 ´ 2C22q

1

�

�⌘,

(12)
which can also be substituted back into Eq. (10b) to get the final set of first-order mean
orbit element relationships as a function of �⌘:

�L “ ´ p3 ⌘ ` 4qL rB2 pC20 ´ 6C22q ` 5!

2
T pC20 ´ 2C22qs

B

2 r7 p⌘ ` 1q pC20 ´ 6C22q ` 4 ⌘

4
L

4s ` 7!

2
T p3 ⌘ ` 5q pC20 ´ 2C22q

1

⌘

�⌘.

(13)

Thus, for any reasonable value of �⌘ “ ⌘d ´ ⌘, the Equations (12) and (13) give
the mean inclination and semi-major axis differences that minimize the secular drift
induced by second-order second-degree gravity terms. Also notice that for C22 “ 0,
!T “ ´B cos i, the Eq. (12) and (13) reduce to the full J2-invariant orbit relationships
derived in Reference 8.

MEAN/OSCULATING ORBIT ELEMENT MAPPINGS

The second-order second-degree bounded relative orbit conditions have been derived
in the mean orbit element space. Thus, it is necessary to implement a reliable mean-to-
osculating orbit element mapping in order to design spacecraft formation about slowly
rotating asteroids. To that end, a first-order Lie-Deprit transformation is implemented
to convert from mean to osculating orbit elements and vice versa.11 The generating
functions used for the conversion can be found in De Saedeleer and Henrard.12
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Figure 1 shows a comparison between two different chief trajectories integrated in
the rotating body-fixed frame of the asteroid for four weeks, i.e., more than 70 Orbital
Periods (OP), with a second-order second-degree gravity field.9 Both the trajectories are
initialized on a quasi-frozen orbit with keplerian orbit elements given by

œc “
“
a e i ⌦ ! M

‰T
,

“
“
3800 0.10 147.22 90.00 0.00 180.00

‰T (m, -, deg). (14)

However, in the plot on the right the initial conditions (14) are first converted with the
aforementioned Lie-Deprit transformation.

As expected, the mean orbit element initialized trajectory displays a much more sta-
ble behaviour than the one initialized in the osculating orbit element space. However,
the time histories of the chief osculating orbit elements shown in Figure 2 reveal that
second-order effects can hardly be neglected for orbiters about Toutatis (C20 » ´0.31,

Figure 1: Osculating and Mean Orbit Element Initialized Chief Trajectories.
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Figure 2: Osculating orbit elements for the mean orbit element initialized trajectory.
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C22 » 0.12). This is even more evident when we compare different relative trajectories
computed with the same mean-to-osculating orbit element mapping but using different
initial conditions for the chief (Figures 3–5). Even though the relative trajectories are
more performant than the standard J2 invariant orbits, their stability seems to vary with
the initial conditions of the chief spacecraft. Therefore, the first-order Lie-Deprit trans-
formation currently available in the literature does not seem to be accurate enough to
design long-term relative trajectories about strongly elongated bodies. Instead, consider
the strategy outlined in the next sections, which involves the computation of periodic
and quasi-periodic orbits about Toutatis.
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Figure 3: In-plane relative trajectories with �! “ ´�M “ 8 deg, and ! “ 0 and 90 deg
respectively.
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with �i “ 0.4 deg, �! “ 8 deg, �M “ ´8 deg, and ! “ 0 deg.
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Figure 5: J2-invariant and second-order second-degree out-of-plane relative trajectories
with �i “ 0.4 deg, �! “ 8 deg, �M “ ´8 deg, and ! “ 90 deg.

EQUATIONS OF MOTION

In order to compute periodic orbits, consider the equations of motion for one space-
craft in orbit about 4179 Toutatis. The asteroid is modeled as a tri-axial ellipsoid with
semi-major axes ↵ “ 2250 m, � “ 1200 m, and � “ 950 m (Figure 6). Moreover,
although Toutatis is a non-principal axis rotator,13 it is assumed that the angular veloc-
ity vector of the body is aligned with the third axis ê3 of an inertial reference frame
N “ tO, ê1, ê2, ê3u centered on the body and oriented such that ê1, ê2, and ê3 are par-
allel to the asteroid principal axes of inertia at time t0 “ 0. Then, a second rotating ref-
erence frame can be defined such that b̂1, b̂2, and b̂3 are always aligned with the asteroid
principal axes of inertia. Thus, let B “ tO, b̂1, b̂2, b̂3u be denoted as the Body-Centered-
Body-Fixed frame (BCF) and N “ tO, ê1, ê2, ê3u as the Body-Centered-Inertial frame
(BCI), with !B{N “ !T b̂3, !T “ 1.34 ˆ 10

´5 rad/s as the angular velocity of the B
frame as seen by the inertial frame N .

In BCF, the equations of motion of a single satellite are given by
$
&

%

:x “ !

2
T x ` 2!T 9y ` Ux ` fx,

:y “ !

2
T y ´ 2!T 9x ` Uy ` fy,

:z “ Uz ` fz,

(15)

where r “ x b̂1 ` y b̂2 ` z b̂3 is the position vector of the satellite, Ux, Uy, Uz are the B-
frame components of the gravitational acceleration exerted by the central body, and fx,
fy, fz are the B-frame components of control input vectors and/or external perturbations
acting on the system (e.g., solar radiation pressure and third body attraction).

Following Reference 14, the body-fixed coordinates of the gravitational attraction
excerted by a constant density tri-axial ellipsoid can be computed analytically from the
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Figure 6: Asteroid 4179 Toutatis and Reference Frames.

partial derivatives of the potential

U “ ´µ

3

4

ª 8

0

�px, y, z, v ` ⇤q dv

�pv ` ⇤q , (16)

where

�pv ` ⇤q “
a

p↵2 ` ⇤ ` vqp�2 ` ⇤ ` vqp�2 ` ⇤ ` vq, (17a)

�px, y, z, v ` ⇤q “ x

2

↵

2 ` ⇤ ` v

` y

2

�

2 ` ⇤ ` v

` z

2

�

2 ` ⇤ ` v

´ 1. (17b)

Observe that U depends on both the gravitational parameter of the body, i.e.,

µ “ 1792.60 m3/s2, (18)

and ⇤, which is defined to be either the positive root of �px, y, z,⇤q “ 0 whenever U is
computed outside of the ellipsoid, or zero otherwise.

It is also worth noting that the system (15) admits an integral of motion given by

C “ ´1

2

p 9x2 ` 9y2 ` 9z2q ` 1

2

!

2
T px2 ` y

2q ` U, (19)

which is also known as the Jacobi integral. Furthermore, it turns out that the equations
of motion (15) can be easily linearized via

9
X “

“
A

‰
X (20)
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where X “
“
x y z 9x 9y 9z

‰T ,

“
A

‰
“

»

——————–

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

!

2
T ` Uxx Uxy Uxz 0 2!T 0

Uxy !

2
T ` Uyy Uyz ´2!T 0 0

Uxz Uyz Uzz 0 0 0

fi

������fl
, (21)

and Uxx, Uxy, Uxz, Uyy, Uyz, and Uzz are the second partial derivatives of the potential
(16). Accordingly, the State Transition Matrix �pt, t0q can also be integrated along with
Eq. (15) via

9
�pt, t0q “ rAs�pt, t0q, �pt0, t0q “ rI6ˆ6s, (22)

where I6ˆ6 is the 6 ˆ 6 identity matrix.

PERIODIC ORBITS ABOUT 4179 TOUTATIS

Integrating the initial conditions provided by the Lie-Deprit transformation with Eq.
(15) yields the trajectory portrayed in Figure 7a. As it can be seen, the satellite is very
close to be on a periodic trajectory, and further numerical investigation can be carried
on to achieve periodic motion.

To that end, notice that the spacecraft passes through the x-y plane twice along its
orbit: one with 9z ° 0, and one with 9z † 0. Accordingly, Spxq “ z, 9z † 0 is a
valid surface of section that can be used to compute a linearized Poincaré Map and its
associated monodromy matrix.9

Given the reduced state y “
“
x y 9x 9y

‰T , it turns out that deviations on the surface
of section at time t0, namely �y0, can be mapped into deviations at the next surface of
section crossing via

�y1 “ �10 �y0,

“ P

T
0 PS �pt1, t0q pP0 ` PHq �y0 (23)

where

P0 “

»

——–

I2ˆ2 02ˆ2

01ˆ2 01ˆ2

02ˆ2 I2ˆ2

01ˆ2 01ˆ2

fi

��fl , PS “ rI6ˆ6s ´ 1

BS
Bx

ˇ̌
ˇ̌
1

¨ 9
xpt1q

9
xpt1q

BS
Bx

ˇ̌
ˇ̌
1

, (24)

10



PH “ 1

9z0

»

——————–

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

p!2
T x0 ` Ux0q p!2

T y0 ` Uy0q ´ 9x0 ´ 9y0

fi

������fl
. (25)

Accordingly, if y1 “ gpy0, Cq is the full nonlinear Poincaré Map from an initial point
y0 and fixed energy C to the next surface of section crossing y1,

y0 ` �y0 “ gpy0 ` �y0, Cq,

“ gpy0, Cq `
„Bg

By

⇢
�y0 ` . . .

“ y1 ` r�10s �y0 ` . . . (26)

and
�y0 “ rI4ˆ4 ´ �10s´1 py1 ´ y0q. (27)

The Equation (27) can be used to update the initial guess y0 until a fixed point for the
linearized map is found. After five iteration, the algorithm converges to

y0 “
“
1.3185 ˆ 10

´11
3679.9296 0.5812 2.1991 ˆ 10

´14
‰T (m, m/s) (28)

which corresponds to the periodic orbit illustrated in Figures 7b (C “ 0.2145, hence
9z “ ´0.4302 m/s).

(a) (b)

Figure 7: Initial Guess and final Periodic Orbit in the BCF frame.
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It is now possible to explore the continuation of the periodic orbit by varying the value
of the Jacobi integral as follows: Given the periodic orbit of Figure 7b, y˚ “ gpy˚

, Cq,
therefore

y

˚ ` �y “ gpy˚ ` �y, C ` �Cq,

» gpy˚
, Cq ` �10 �y `

„ Bg
BC

⇢
�C, (29)

and
�y “ rI4ˆ4 ´ �10s´1

„ Bg
BC

⇢
�C, (30)

where
„ Bg

BC

⇢
“ P

T
0 PS �pT, 0q

„
0 0 0 0 0

1

C 9z

⇢T

, (31a)

C 9z “ BC
B 9z

“ ´ 9z. (31b)

The new initial guess computed with (30) can now be used to initialize Eq. (27) and
converge to a new periodic orbit at the value of energy C “ C

˚ ` �C. Figure 8 displays
a family of periodic orbits computed at different values of the Jacobi constant for either
⌦R “ ´90 deg or ⌦R “ 90 deg. As it can be seen, changing the value of C yields
periodic orbits at different inclinations, thus giving the possibility to investigate the
central body at different latitudes.

Also notice that the monodromy matrix M “ �10pT, 0q computed along the periodic
orbits typically admit two pairs of complex conjugate eigenvalues with unity magnitude.

(a) (b)

Figure 8: Families of periodic orbits for ⌦R “ ´90 deg and ⌦R “ 90 deg.
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Figure 9: Distribution of the Monodromy matrix eigenvalues for families of periodic
orbits about 4179 Toutatis.

That is, Figure 9 shows the root locus of M for the family of periodic orbits of Figure 8a.
Except for a very few cases where the periodic orbit becomes unstable, the eigenvalues
are usually distributed along the unit circle of the complex plane. In particular, for the
periodic orbit of Figure 7b, the eigenvalues of the monodromy matrix are

�12 “ 0.9609 ˘ i 0.2770, (32a)
�34 “ 0.9016 ˘ i 0.4326. (32b)

Therefore, the periodic orbit turns out to be stable and surrounded by two center man-
ifolds. Because of these center manifolds, initial conditions for long-term bounded
relative motion about 4179 Toutatis can be found.

QUASI-PERIODIC ORBITS ABOUT TOUTATIS

By definition, center manifolds about periodic orbits are made by invariant tori that
surround the periodic orbit itself.9 If a spacecraft is initialized on the surface of a quasi-
periodic torus, it will stay on it forever. Therefore, quasi-periodic invariant tori are
natural candidates for computing initial conditions that yield bounded relative motion
about slowly rotating asteroids.

Following the approach of Koleman et al.,2 quasi-periodic tori can be computed as
follows. First, notice that for a given eigenvalue/eigenvector pair, e.g., � “ �12, v “
v12 “ v1 ` iv2, it is possible to compute the invariant circle of the monodromy map
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Figure 10: Monodromy Matrix Invariant Circle in Different Coordinate Planes.

M . That is, for any ✓ P r0, 2 ⇡s and magnitude , we can define

 p✓q “  cos ✓ v1 ´  sin ✓ v2, (33)

such that M  p✓q “  p✓ ` ⌘q. Therefore,  p✓q is a periodic orbit of the map M (see
Koleman’s paper for proof).

Although  p✓q should not be confused with the invariant set of the Poincaré section
defined by the intersection between the quasi-periodic torus and Spxq, it is a linear
approximation of the relative distance between the torus and the periodic orbit under
investigation. Therefore, it can be used to initialize a Newton iteration scheme aimed to
compute the actual invariant set of the surface of section.

That is, consider N “ 100 points on the invariant circle of the map M defined by
x0,i “  p✓iq with ✓i “ 2 ⇡ pi ´ 1q{N , i “ 1, . . . , N . Figure 10 shows how the points
x0,i look like in different coordinate spaces, illustrating that the 9x– 9y coordinate plane
could be used to effectively parametrize the intersection between the quasi-periodic
torus and the surface of section Spxq “ z, 9z † 0. To that end, let R “

a
9x2 ` 9y2, and

consider a truncated Fourier series up to the Nmax “ 20 order such that

X0 “

»

—–
x0,1

...
x0,N

fi

�fl “ Ap✓qQ, (34)
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where Q “
”
Q

T
x Q

T
y Q

T
R Q

T
9z

ıT
is the p8Nmax ` 4q ˆ 1 Fourier coefficient vector

(since z “ 0 on the surface of section, there is no need to compute the corresponding
Fourier coefficient vector) and Ap✓q is the 6N ˆ p8Nmax ` 4q matrix defined by

Ap✓q “

»

—–
Ap✓1q

...
Ap✓Nq

fi

�fl , Ap✓iq “

»

——————–

csp✓iq 0 0 0

0 csp✓iq 0 0

0 0 0 0

0 0 cos p✓iq csp✓iq 0

0 0 sin p✓iq csp✓iq 0

0 0 0 csp✓iq

fi

������fl
,(35)

with

csp✓iq “
“
1 cos p✓iq sin p✓iq cos p2 ✓iq sin p2 ✓iq . . . cos pNmax ✓iq sin pNmax ✓iq

‰
.

(36)
Now propagate each of the N points till the next surface of section crossing using the
full nonlinear equations of motion (15), and compute the corresponding angle in terms
of the chosen coordinate variable, i.e.,

✓T,i “ arctan

ˆ
9yi
9xi

˙
. (37)

If the X0 points were initialized exactly on the invariant set of the Poincaré section, the
points obtained after one orbital period, namely XT , would satisfy

F pQq “ XT ´ Ap✓T qQ “ 0. (38)

Since this is not the case–at least for the very first initial guess–consider updating the
Fourier coefficients using the Newton’s iteration scheme

Q

k`1 “ Q

k ´ DF pQkq:
F pQkq, (39)

where DF

: denotes the pseudoinverse of the jacobian matrix of F pQq (see Koleman’s
original paper for details on how to compute the Jacobian matrix).

Before that, observe that quasi-periodic orbits are 2D objects in a six-dimensional
phase space. Therefore, two properties need to be specified in order to define a quasi-
periodic orbit uniquely. It turns out that the best choice of parameters to achieve bounded
relative motion is made by the area of the invariant set in the 9x– 9y plane, namely

A “ ⇡

2

Q

T
R QR, (40)

and the period of the quasi-periodic orbit, i.e.,

T “ 1

N

Nÿ

i“1

⌧pxiq, (41)
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where ⌧pxiq is the time between two consecutive surface of section crossings for the
i-th trajectory. Thus, consider augmenting the error vector F pQq with

F pQq “ rXT ´ Ap✓T qQ; �A; �T s, (42)

where �A “ A´Adesired and �T “ T ´Tdesired are the differences between the current
and desired values. Then, the algorithm usually converges to the desired quasi-periodic
orbit in four or five iterations.

FORMATION FLYING

By choosing � “ �12,  “ 50 m, Adesired equal to the 9x– 9y area of Figure 10, and Tdesired

equal to the period of the periodic orbit of Figure 7b, the algorithm converges after four
iterations to a quasi-periodic torus that yields the relative motion of Figures 11. In the
plots of Figure 11, the chief spacecraft has been initialized on the periodic orbit, whereas
the deputy spacecraft has been initialized on one of the quasi-periodic orbits obtained
with the Newton iteration scheme. The resulting in-plane relative trajectories of the
satellites are integrated using the equations of motion (15) for 30 days.

Although there is some residual drift in the along-track direction, the relative tra-
jectory computed with quasi-periodic initial conditions does not diverge as fast as the
relative trajectory computed from the linear approximation of the invariant torus (i.e.,
using as initial conditions one of the x0,i points created on the invariant set of the mon-
odromy map M ). Similar results are also obtained when initializing the deputy space-
craft on the quasi-periodic torus computed for the second center manifold, i.e., � “ �34,
v “ v34 “ v3 ` iv4. The obtained out-of-plane relative trajetories are illustrated in
Figure 12.
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Figure 11: In-plane Relative Trajectories over 30 days. The chief spacecraft has been
initialized on the periodic orbit.
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Figure 12: Out-of-plane Relative Trajectories over 30 days. The chief spacecraft has
been initialized on the periodic orbit.

Another interesting design option would be to initialize both the chief and the deputy
satellites on the invariant torus. Figures 13 and 14 display how the relative trajectory
looks like for spacecraft formations on the first and second center manifold respectively.
As it can be seen, bounded relative motion about slowly rotating tri-axial ellipsoids can
be achieved over long time spans; i.e., more than 30 days.

It is important to note that these results are obtained using the full constant density
ellipsoidal gravity model of the central body. However, the plots of Figures 10 and 14
also assume perfect initial conditions and do not take into account the effects of other
forces such as solar radiation pressure and third body attraction. As one can expect,
including these perturbations in the simulations leads to unstable relative motion, which
would eventually require active control strategies to mitigate the relative drift induced by
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Figure 13: In-plane Relative Trajectory over 30 days. Satellites are both initialized on
the invariant torus.
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Figure 14: Quasi-pendulum Relative Trajectories over 30 days. Satellites are both ini-
tialized on the invariant torus.

the errors in the system. Yet, even in a worst case scenario where the deputy and chief
spacecraft are deployed when Toutatis is at perihelion, control wouldn’t be necessary
for more than 2.5 days (Figure 15). In this time frame, many scientific operations could
be performed and used to infer valuable information on the mechanical and chemical
properties of the target asteroid.
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Figure 15: Effects of SRP and Sun Third body attraction on 3U Cubesat Formations
about Toutatis at Perihelion.
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CONCLUSIONS AND FUTURE WORK

By combining analytical and numerical methods, it is possible to come up with a sys-
tematic procedure to initialize spacecraft formations about 4179 Toutatis. The problem
was first analyzed with a second-order second-degree gravity field, which was initially
used to derive first-order differential relationships between the mean orbit elements of
the spacecraft. The second-order second-degree bounded relative motion conditions de-
rived in this paper were seeking to minimize the relative drift between the satellite in
the formations caused by the elongated shape of the central body. However, this method
fails to provide long-term bounded relative orbits because of the approximations and er-
rors in the Lie-Deprit transformation used to carry on the necessary mean-to-osculating
orbit element conversions.

Such mapping, however, turns out to be necessary to provide a reliable initial guess
for the numerical computation of periodic orbits in the body-fixed frame of the asteroid
(Figure 7). Since the monodromy matrix computed along these trajectories has two
pairs of complex conjugate eigenvalues, the computed periodic orbits are stable and
surrounded by two center manifolds. Because of this, Koleman’s surface of section
approach was applied to extend these manifolds beyond the linear regime, and used to
compute families of quasi-periodic orbits about Toutatis.2 In particular, by choosing the
orbital period as one of the parameters in Koleman’s method, it was possible to come up
with invariant tori foliated by quasi-periodic orbits of the same period. This is an ideal
condition for bounded relative motion as it yields in-plane and out-of-plane relative
trajectories that remain bounded for more than 30 days (Figures 13 and 14).

Future work will be focused on extending this approach beyond slowly rotating bod-
ies and applying dynamical systems theory to design spacecraft formations about plan-
ets and general asteroids. Furthermore, it will be interesting to investigate the existence
of cost-free bounded relative trajectories with more sophisticated gravity fields such as
the constant density polyhedron model, which better takes into account the actual phys-
ical shape of the target asteroid.15 Finally, solar radiation pressure should be modeled
and included in the equations of motion to improve robustness.
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