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Impulsive Feedback Control of Nonsingular Elements in the
Geostationary Regime

Paul V. Anderson∗ and Hanspeter Schaub†

University of Colorado, Boulder, CO, 80309, USA

An N -impulse feedback control strategy is developed to mitigate specified errors in a set of nonsingular orbit element
differences between a chief and deputy craft. While suitable for general orbits, this strategy is motivated by relative
control in the geosynchronous regime. The linear mapping between these nonsingular element differences and the Hill
frame state of the deputy is derived, and the Gaussian variational equations for the nonsingular set are developed as
a basis for the fuel-optimal control strategy. Three examples demonstrate that this method is proficient in detecting
∆v-optimal burn locations for general orbit transfers.

I Introduction

SPACECRAFT formation flying is a challenging problem that has been broadly studied in the literature,1, 2, 3 and with
renewed interest in on-orbit servicing and refueling applications, the problems of relative motion and intersatel-

lite rendezvous, especially in the geostationary (GEO) regime, take on renewed importance.4, 5, 6 Conventional orbit
propagation and estimation employ classical Keplerian elements or Cartesian position and velocity to characterize
state, but these representations are not ideal for near-geostationary motion: classical elements are not well-defined for
weakly-eccentric and weakly-inclined orbits typical of the GEO regime, and rapidly-changing Cartesian coordinates
mask the near-linearity of geosynchronous motion.7 Nonsingular sets are thus desirable for describing motion near
the GEO altitude. This study implements an element difference description2 of relative motion, using the nonsingular
set e ≡ (a, ξ, η, ζ, ψ, λ), where a is the semi-major axis of the orbit and the other parameters are defined by:8

ξ ≡ e sin(ω + Ω)

η ≡ e cos(ω + Ω)

ζ ≡ sin(i/2) sin(Ω) (1)
ψ ≡ sin(i/2) cos(Ω)

λ ≡ f + ω + Ω

The classical Keplerian elements of eccentricity e, inclination i, right ascension of ascending node Ω, argument of
periapsis ω, and true anomaly f are thereby used to assemble the nonsingular set presented in Equation (1). The
inertial Cartesian state of the chief and deputy satellites may be readily mapped to the classical set, which is thereafter
transformed to the nonsingular set with the above formulation. Note that this nonsingular set is a modified variant of
the equinoctial element set established by Broucke,9 in which the tan(i/2) factor inherent to the ζ and ψ elements
has been replaced with a sin(i/2) factor to eliminate the singularity occurring at the retrograde inclination i = 180◦.
The nonsingular set e furthermore differs from the conventional equinoctial set by implementing the true anomaly
f (instead of the mean anomaly) in the definition of the true longitude parameter λ, in order to simplify the deriva-
tions detailed in Sections II-III. The modified elements presented in Equation (1) are valid for zero eccentricity and
inclination, and are thereby well-defined for the description of relative motion in the geostationary regime.

This study presents the forward linear mapping that transforms the nonsingular element difference vector δe =
ed−ec, where ed and ec denote the elements of the deputy and chief satellites, respectively, into the relative Cartesian
state of the deputy object as observed by the chief satellite in the Hill frame of reference.10 Furthermore, the noncon-
servative variational equations for the nonsingular set are derived, and implemented as the foundation for an impulsive
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feedback control scheme that seeks to efficiently minimize fuel expenditures for formation maintenance applications,
or more generally, solutions to the optimal orbit correction problem.

Impulsive feedback control methodology has been extensively studied in the literature,1, 11, 12, 13 but many of
these methods rely upon complicated, time-consuming optimization algorithms to determine fuel-optimal burn place-
ment.14, 15 In a general orbit correction problem, the initial conditions for an optimization routine are non-intuitive
and difficult to discern – to alleviate this issue, this study presents a fuel-optimal, time-fixed N -impulse method to de-
termine appropriate initial conditions for more complicated trajectory optimization routines, with minimal computing
time. This N -impulse technique solves a simple fuel-minimization problem subject to linear constraints, to rapidly
“detect” locations at which corrective impulses should be performed.

II Development of Forward Linear Mapping
Analytic derivation of the forward linear mapping from differences in the nonsingular orbital element set provided

in Equation (1) to the corresponding Hill frame Cartesian state (x, y, z, ẋ, ẏ, ż)
T of the deputy object is performed

by transforming the appropriate variational terms in the linear mapping developed in Alfriend.16 The noninertial
Hill frame of reference is centered at the chief spacecraft of interest and implements rotating axes that point in the
local radial (ôr), in-track (ôi), and cross-track (ôc) directions of the chief spacecraft.10 For reference, the Hill frame
description of relative motion is illustrated within Figure 1. The linear mapping

X = [A (ec)]δe (2)

wherein the Hill frame state X = (x, y, z, ẋ, ẏ, ż)
T is thus converted into a form consistent with the description

δe = ed − ec ≡ (δa, δξ, δη, δζ, δψ, δλ)
T (3)

for relative deputy orbits that are smalla as compared with the chief orbit radius.10 Note that although this formulation
facilitates perturbations, Keplerian motion is henceforth assumed for the purposes of this study; each of the nonsingular
orbit element differences with the exception of δλ are invariant in this two-body case.

II.A Mapping to Hill Frame Position

ôr

x

y

z

Deputy

rc O

ôc ôi

Chief

Figure 1: Hill relative motion frame.

Relative Hill frame Cartesian position (x, y, z)
T is expressed in terms

of classical orbital element differences as:16

x = δr (4)
y = r (δθ + cos i δΩ) (5)
z = r (sin θ δi− cos θ sin i δΩ) (6)

where r, i, and θ are the chief orbit radius, inclination, and argument of
latitude (θ = ω+f ), respectively. Formulating the conic equation in terms
of the nonsingular orbit element set, the orbit radius is cast:

r =
a
(
1− ξ2 − η2

)
1 + η cosλ+ ξ sinλ

(7)

The first variation of the chief radius r is therefore expressed as

δr =
r

a
δa− r

p
(2aξ + r sinλ) δξ − r

p
(2aη + r cosλ) δη + r

(
Vr
Vt

)
δλ (8)

where Vr and Vt are the radial and transverse velocity components of the chief craft, defined by

Vr =
h

p
(η sinλ− ξ cosλ) (9)

Vt =
h

p
(1 + η cosλ+ ξ sinλ) (10)

aThe forward mapping implements linearization about the chief orbital motion – deviation from this reference must therefore be small such that
this linear approximation remains valid in the truncation of higher-order terms beyond those of the first-order.
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where h and p denote the specific angular momentum and semi-latus rectum of the chief’s orbit, respectively. Defining
α ≡ a/r, ρ ≡ r/p, and ν ≡ Vr/Vt for simplicity,10 substituting Equation (8) into Equation (4) yields:

x =
1

α
δa− ρ (2aξ + r sinλ) δξ − ρ (2aη + r cosλ) δη + rνδλ (11)

For transformation of Equation (5), note that the right ascension of the ascending node of the chief spacecraft is
uniquely determined with Ω = tan−1(ζ/ψ). The first variation of this parameter is therefore expressed as:

δΩ =
ψ

ζ2 + ψ2
δζ − ζ

ζ2 + ψ2
δψ (12)

Considering the nonsingular element λ = f + ω + Ω = θ + Ω, the first variation of the argument of latitude is

δθ = − ψ

ζ2 + ψ2
δζ +

ζ

ζ2 + ψ2
δψ + δλ (13)

Noting that ζ2 + ψ2 = sin2(i/2), it is readily shown that cos i = 1− 2ζ2 − 2ψ2. Substituting into Equation (5) with
Equations (49), (12), and (13), the Cartesian in-track component of position may be expressed as follows:

y = r (−2ψδζ + 2ζδψ + δλ) (14)

Conversion of Equation (6) requires trigonometric development of intermediate results. Recalling θ = λ− Ω:

cos θ = cosλ cos Ω + sinλ sin Ω (15a)
sin(i/2) cos θ = ψ cosλ+ ζ sinλ (15b)

2 cos(i/2) sin(i/2) cos θ = 2 cos(i/2) (ψ cosλ+ ζ sinλ) (15c)
sin i cos θ = 2 cos(i/2) (ψ cosλ+ ζ sinλ) (15d)

Employing the relation ζ2 + ψ2 = sin2(i/2), it may be demonstrated that cos(i/2) =
√

1− ζ2 − ψ2. Thereby:

cos θ sin i = 2
√

1− ζ2 − ψ2 (ψ cosλ+ ζ sinλ) (16)

With the trigonometric expressions established above, the inclination of the chief spacecraft may be written

i = 2 tan−1

(√
ζ2 + ψ2

1− ζ2 − ψ2

)
(17)

The first variation of the chief inclination i is therefore expressed as

δi =
2

ζ2 + ψ2
(ζδζ + ψδψ)

√
ζ2 + ψ2

1− ζ2 − ψ2
(18)

Recalling that the first variation of the expression cos i = 1 − 2ζ2 − 2ψ2 is equivalent to sin i δi = 4ζδζ + 4ψδψ,
trigonometric development of intermediate results is employed to transform the sin θ δi term of Equation (6):

sin θ = sinλ cos Ω− cosλ sin Ω (19a)
sin(i/2) sin θ = ψ sinλ− ζ cosλ (19b)

2 cos(i/2) sin(i/2) sin θ = 2 cos(i/2) (ψ sinλ− ζ cosλ) (19c)
sin i sin θ = 2 cos(i/2) (ψ sinλ− ζ cosλ) (19d)

Multiplying each side of the above expression for sin i sin θ by the factor δi2, the developed identity becomes

(4ζδζ + 4ψδψ) sin θ δi = 2
√

1− ζ2 − ψ2 (ψ sinλ− ζ cosλ) δi2 (20)
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Substituting Equation (18) into the right-hand side of the above expression, the developed identity is finalized:

sin θ δi = − 2√
1− ζ2 − ψ2

[
ζ cosλ− ψ sinλ

ζ2 + ψ2

]
(ζδζ + ψδψ) (21)

Substituting Equations (49), (12), (16), and (21) into Equation (6), the cross-track component of position is

z =
2r√

1− ζ2 − ψ2

{ [(
ψ2 − 1

)
cosλ+ ζψ sinλ

]
δζ −

[(
ζ2 − 1

)
sinλ+ ζψ cosλ

]
δψ
}

(22)

Derivation of the linear mapping from nonsingular orbit element differences to Hill frame position is complete.

II.B Mapping to Hill Frame Velocity
Relative Hill frame Cartesian velocity (ẋ, ẏ, ż) is expressed in terms of classical orbit element differences as:16

ẋ = δVr (23)

ẏ = δVt − θ̇x+

(
Vr
r

)
y (24)

ż = (Vt cos θ + Vr sin θ) δi+ (Vt sin θ − Vr cos θ) sin i δΩ (25)

Recalling Equation (9) for the radial velocity component of the chief craft, the first variation of Vr is expressed with
nonsingular orbital element differences; simplification gives the Cartesian radial component of velocity:

ẋ = −Vr
2a
δa+ (Vraξ − h cosλ)

δξ

p
+ (Vraη + h sinλ)

δη

p
+

(
1

r
− 1

p

)
hδλ (26)

The form of Equation (26) is analogous to that of the radial velocity ẋ mapping with classical orbital element differ-
ences.10 In this development, the first variation of the specific angular momentum h of the chief craft is expressed by
recalling that h =

√
µp, where µ denotes the gravitational parameter of the central body:

δh =
h

2p
δp (27)

Recalling that the semi-latus rectum is cast as p = a
(
1− ξ2 − η2

)
, the first variation of this parameter is

δp =
(
1− ξ2 − η2

)
δa− 2aξδξ − 2aηδη (28)

Utilizing Equation (10) for the chief’s transverse velocity component, the first variation of Vt is simplified to

δVt = −Vt
2a
δa+ (Vtaξ + h sinλ)

δξ

p
+ (Vtaη + h cosλ)

δη

p
− Vrδλ (29)

Substituting Equations (11), (14), and (29) into Equation (24) and employing the specific angular momentum relation-
ship θ̇ = h/r2, the Cartesian in-track component of velocity for the deputy object may be formulated:

ẏ = −3Vt
2a

δa+ (3Vtaξ + 2h sinλ)
δξ

p
+ (3Vtaη + 2h cosλ)

δη

p
− 2Vrψδζ + 2Vrζδψ − Vrδλ (30)

In a manner procedurally equivalent to that used in the development of Equation (21), it may be shown that

cos θ δi = − 2√
1− ζ2 − ψ2

[
ζ sinλ+ ψ cosλ

ζ2 + ψ2

]
(ζδζ + ψδψ) (31)

Furthermore, recalling the trigonometric identities determined previously for the Cartesian position mapping:

cos θ sin i = 2 cos(i/2) (ψ cosλ+ ζ sinλ) (32)
sin θ sin i = 2 cos(i/2) (ψ sinλ− ζ cosλ) (33)
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Transformation of Equation (25) is thus performed by substituting in the intermediate expressions provided by Equa-
tions (12), (21), (31), (32), and (33). The cross-track component of velocity for the deputy is thereby

ż =
2h

p
√

1− ζ2 − ψ2

[(
1− ψ2

)
(ξ + sinλ) + ζψ (η + cosλ)

]
δζ

+
2h

p
√

1− ζ2 − ψ2

[(
1− ζ2

)
(η + cosλ) + ζψ (ξ + sinλ)

]
δψ

(34)

Derivation of the linear mapping from nonsingular orbit element differences to Hill frame velocity is complete; note
that this development could have been equivalently performed through the differentiation of the position mapping
given by Equations (11), (14), and (22), with substitution of the first variation in the drift rate δλ̇.

II.C Mapping to Hill Frame State

The development of the linear mapping from the nonsingular orbital element differences (δa, δξ, δη, δζ, δψ, δλ)
T

to the relative Cartesian state expressed within the rotating Hill frame of the chief spacecraft is now complete:

x =
1

α
δa− ρ (2aξ + r sinλ) δξ − ρ (2aη + r cosλ) δη + rνδλ

y = r (−2ψδζ + 2ζδψ + δλ)

z =
2r√

1− ζ2 − ψ2

{ [(
ψ2 − 1

)
cosλ+ ζψ sinλ

]
δζ −

[(
ζ2 − 1

)
sinλ+ ζψ cosλ

]
δψ
}

ẋ = −Vr
2a
δa+ (Vraξ − h cosλ)

δξ

p
+ (Vraη + h sinλ)

δη

p
+

(
1

r
− 1

p

)
hδλ (35)

ẏ = −3Vt
2a

δa+ (3Vtaξ + 2h sinλ)
δξ

p
+ (3Vtaη + 2h cosλ)

δη

p
− 2Vrψδζ + 2Vrζδψ − Vrδλ

ż =
2h

p
√

1− ζ2 − ψ2

[(
1− ψ2

)
(ξ + sinλ) + ζψ (η + cosλ)

]
δζ

+
2h

p
√

1− ζ2 − ψ2

[(
1− ζ2

)
(η + cosλ) + ζψ (ξ + sinλ)

]
δψ

The above transformation expressions satisfy the linear mapping provided in Equation (2) for the nonsingular set of
orbital element differences given by Equation (3). The relative Hill frame state of the examined deputy object may
thereby be expressed as a function of the chief orbital elements ec and the instantaneous element differences δe. Note
this description accommodates perturbations and is valid for chief eccentricities ec ≥ 0.10

II.D Validation of Linear Mapping

Validation of the linear mapping from nonsingular orbital element differences to relative Hill frame Cartesian state
is performed through quantitative comparison of the deputy positions and velocities computed with (a) the complete
linear mapping provided within Equation (35), and (b) inertial differencing of the propagated chief and deputy states,
with transformation of the resultant deputy states into the relative Hill frame of the chief. The simulation is conducted
assuming a point-mass Earth without orbital perturbations and the initial conditions listed in Table 1, representative of
nominal chief orbits in the geostationary regime. Propagated error in the Hill frame state of the deputy, as computed
with the developed linear mapping from nonsingular orbit element differences, is depicted in Figure 2. The mapping is
in strong agreement with the exact relative motion solution obtained with inertial differencing – the oscillatory errors
in relative position are of O(10−3) m, while errors in Hill frame velocity are of O(10−6) m/s. This linear mapping
therefore approximates the full nonlinear motion experienced by the deputy with a degree of accuracy appropriate for
the verification of this formulation. Note that because temporal evolution of the error remains bounded, this mapping
does not decay in time. As a basis for comparison, propagated error in the Hill frame Cartesian state of the deputy,
as computed with the classical Hill/Clohessy-Wiltshire (HCW) equations of relative motion, is illustrated in Figure 3.

5 OF 16
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



The HCW formulation assumes a circular chief (ec = 0) and relative motion in the linear regime:10

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0 (36)

z̈ + n2z = 0

where n =
√
µ/r3 is the mean motion of the chief. Propagated errors in Hill frame position are of two orders of

magnitude higher than the deviations achieved with the linear mapping; secular growth experienced in the in-track
error component is a consequence of the weak ellipticity of the chief orbit utilized for this simulation. The HCW
description of relative motion thus temporally decays even with weakly-eccentric chief orbits; the linear mapping
developed within this analysis does not impose this restriction upon the chief, thereby offering a more accurate and
adaptable description of relative motion well-suited for chief orbits in the GEO regime.

Table 1: Initial conditions for validating linear mapping.
Element Chief (ec) Deputy (ed) δe

a 42164 km 42164 km 0 km
e 0.0001 0.00011 0.00001
i 0.001◦ 0.002◦ 0.001◦

Ω 0◦ 0◦ 0◦

ω 0◦ 0◦ 0◦

f0 0◦ 0◦ 0◦
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Figure 2: Temporal error in relative Hill frame state of deputy as computed with linear mapping.

III Development of Gaussian Variational Equations
The Gaussian variational equations for nonconservative perturbations to the nonsingular orbital elements are de-

veloped to characterize the sensitivities of the elements to thrusting events – this formulation quantifies rates of change
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ẏ
V

e
lo

c
it
y

E
rr

o
r

(m
/
s)

ż
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Figure 3: Temporal error in relative Hill frame state of deputy as computed with HCW equations.

of the elements in the presence of nonconservative accelerations. Differentiating Equations (1):

dξ
dt

= sin(ω + Ω)
de
dt

+ η

(
dω
dt

+
dΩ

dt

)
(37)

dη
dt

= cos(ω + Ω)
de
dt
− ξ

(
dω
dt

+
dΩ

dt

)
(38)

dζ
dt

=
1

2
cos(i/2) sin(Ω)

di
dt

+ ψ
dΩ

dt
(39)

dψ
dt

=
1

2
cos(i/2) cos(Ω)

di
dt
− ζ dΩ

dt
(40)

dλ
dt

=
df
dt

+
dω
dt

+
dΩ

dt
(41)

Recalling the well-known Gaussian variational equations for the classical Keplerian element set (a, e, i,Ω, ω, f):10

da
dt

=
2a2

h

(
e sin far +

p

r
ai

)
(42)

de
dt

=
1

h

(
p sin far +

[
(p+ r) cos f + re

]
ai
)

(43)

di
dt

=
r cos θ

h
ac (44)

dΩ

dt
=
r sin θ

h sin i
ac (45)

dω
dt

=
1

he

[
− p cos far + (p+ r) sin fai

]
− r sin θ cos i

h sin i
ac (46)

df
dt

=
h

r2
+

1

he

[
p cos far − (p+ r) sin fai

]
(47)

wherein ad ≡ arôr + aiôi + acôc denotes the nonconservative disturbing acceleration expressed in the local orbit
radial (ôr), in-track (ôi), and cross-track (ôc) frame of reference. As the semi-major axis a is used in the nonsingular
element set, transformation of Equation (42) provides the first variational equation. Recalling the formulation e sin f =
η sinλ− ξ cosλ, the rate of change of the perturbed semi-major axis is rewritten as

da
dt

=
2a2

h

[
(η sinλ− ξ cosλ) ar +

p

r
ai

]
(48)
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wherein h and p denote specific angular momentum and semi-latus rectum, respectively, and the radius r is

r =
a
(
1− ξ2 − η2

)
1 + η cosλ+ ξ sinλ

(49)

Substituting Equations (43), (45), and (46) into Equation (37), the rate of change of the parameter ξ is cast:

dξ
dt

=
1

h

(
−p cosλ ar +

[
(p+ r) sinλ+ rξ

]
ai − rη

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
ac

)
(50)

where the identities sin(i/2) sin θ = ψ sinλ − ζ cosλ and cos(i/2) =
√

1− ζ2 − ψ2 have been employed in the
nontrivial simplification. Similarly, it may be shown that the rate of change of the parameter η is written as

dη
dt

=
1

h

(
p sinλ ar +

[
(p+ r) cosλ+ rη

]
ai + rξ

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
ac

)
(51)

The parameters ξ and η contain the eccentricity and the Euler angles ω and Ω, and thus may be perturbed by radial,
in-track, and cross-track accelerations simultaneously. Substituting Equations (44) and (45) into Equation (39), the
rate of change of the parameter ζ is expressed as

dζ
dt

=
r

2h cos(i/2)

[
sin θ cos Ω + cos2(i/2) cos θ sin Ω

]
ac (52)

Implementing cos2(i/2) = 1 − sin2(i/2) and the expression sin(i/2) cos θ = ψ cosλ + ζ sinλ, and recalling from
trigonometry that sin θ cos Ω + cos θ sin Ω = sin(θ + Ω) = sin(f + ω + Ω) = sinλ, this rate may be recast:

dζ
dt

=
r

2h
√

1− ζ2 − ψ2

[
(1− ζ2) sinλ− ζψ cosλ

]
ac (53)

In an equivalent manner, the rate of change of the analogous parameter ψ may be converted into the following:

dψ
dt

=
r

2h
√

1− ζ2 − ψ2

[
(1− ψ2) cosλ− ζψ sinλ

]
ac (54)

The parameters ζ and ψ contain the Euler angles i and Ω, and are only influenced by cross-track accelerations. Lastly,
the rate of change of the longitude parameter λ in Equation (41) is transformed into the following:

dλ
dt

=
h

r2
− r

h

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
ac (55)

Note that perturbed variation in the longitude parameter λ may only be induced with cross-track acceleration. De-
velopment of the Gaussian variational equations for the nonsingular element set (a, ξ, η, ζ, ψ, λ) is complete; this
formulation quantifies sensitivities of the elements to nonconservative disturbances and is summarized:

da
dt

=
2a2

h

[
(η sinλ− ξ cosλ) ar +

p

r
ai

]
(56)

dξ
dt

=
1

h

(
−p cosλ ar +

[
(p+ r) sinλ+ rξ

]
ai − rη

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
ac

)
(57)

dη
dt

=
1

h

(
p sinλ ar +

[
(p+ r) cosλ+ rη

]
ai + rξ

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
ac

)
(58)

dζ
dt

=
r

2h
√

1− ζ2 − ψ2

[
(1− ζ2) sinλ− ζψ cosλ

]
ac (59)

dψ
dt

=
r

2h
√

1− ζ2 − ψ2

[
(1− ψ2) cosλ− ζψ sinλ

]
ac (60)

dλ
dt

=
h

r2
− r

h

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
ac (61)
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The Gaussian variational equations for the element set presented in Equations (1) are nonsingular for circular orbits
with zero inclination, and are thus well-suited to describing perturbed motion within the GEO regime. This formula-
tion furthermore eliminates the numerical difficulties associated with the variational equations in classical Keplerian
elements for weakly-eccentric orbits, and therefore should be employed in those situations. These variational equa-
tions are convenient for quantifying effects of a control thrust on each of the nonsingular elements, and are thereby
implemented as the basis for development of the impulsive feedback control scheme.

IV Development of Impulsive Feedback Control Law
AnN -impulse feedback control law is now developed to present methodology for controlling relative orbit tracking

errors at discrete positions in orbit with pre-determined impulsive maneuvers, rather than providing a continuous
thrusting control effort. Modifying the Gaussian variational equations for the nonsingular orbit elements with an
impulsive ∆v thrust in the Hill frame, and considering only the perturbed response of the longitude parameter rate λ̇:

∆a =
2a2

h

[
(η sinλ− ξ cosλ) ∆vr +

p

r
∆vi

]
(62)

∆ξ =
1

h

(
−p cosλ ∆vr +

[
(p+ r) sinλ+ rξ

]
∆vi − rη

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
∆vc

)
(63)

∆η =
1

h

(
p sinλ ∆vr +

[
(p+ r) cosλ+ rη

]
∆vi + rξ

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
∆vc

)
(64)

∆ζ =
r

2h
√

1− ζ2 − ψ2

[
(1− ζ2) sinλ− ζψ cosλ

]
∆vc (65)

∆ψ =
r

2h
√

1− ζ2 − ψ2

[
(1− ψ2) cosλ− ζψ sinλ

]
∆vc (66)

∆λ = − r
h

[
ζ cosλ− ψ sinλ√

1− ζ2 − ψ2

]
∆vc (67)

Note that Equations (65)-(66) can be rewritten in the form

∆ζ =
r sinλ

2h

√
1− ζ2 − ψ2∆vc +

ψ

2
∆λ (68)

∆ψ =
r cosλ

2h

√
1− ζ2 − ψ2∆vc −

ζ

2
∆λ (69)

Corrections in the longitude parameter λ are linearly-related to corrections in the ζ and ψ parameters; thus, errors in
the longitude parameter, and consequently the true anomaly f , cannot be independently controlled with an impulsive
feedback scheme constructed around this set of nonsingular elements. Note, however, that the true anomaly can be
corrected by performing a phasing maneuver in which the semi-major axis is raised or lowered temporarily, to provide
relative drift for the required phase shift. Thus, corrections in semi-major axis may be used for correcting the true
anomaly; the N -impulse feedback law accommodates this correction.

An N -impulse approach is implemented for this study to alleviate difficulties arising from the complexity of
the nonsingular variational equations given in Equations (56)-(61). Reference 1 creates an impulsive firing scheme in
which subsets of the full Keplerian element set are corrected simultaneously, by studying Gauss’s variational equations
to determine ideal times at which to execute the corrective burns. However, with these nonsingular elements, innate
complexity of the variational equations renders an analogous analytical solution difficult to determine. Thus, rather
than seeking an analytical solution for relative orbit corrections, a swift numerical method that will determine the ideal
burn locations for achieving the desired corrections is sought.

IV.A Formulation of Control Strategy
In a manner analogous to that utilized in Reference 1, nonsingular element errors ∆e ≡ (∆a,∆ξ,∆η,∆ζ,∆ψ)T

are held fixed at the beginning of the time frame of correction. An N -impulse sequence is then implemented over the
current revolution, where the burns are executed at uniform increments in true anomaly, such that N = 360◦/f∆v ,
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where f∆v is the specified true anomaly increment expressed in degrees per burn.b Therefore, for the jth impulse
∆vj ≡ (∆vjr ,∆v

j
i ,∆v

j
c)T , the contribution to the nonsingular element corrections become

∆aj =
2a2

h

[
(η sinλj − ξ cosλj) ∆vjr +

p

rj
∆vji

]
(70)

∆ξj =
1

h

(
−p cosλj ∆vjr +

[
(p+ rj) sinλj + rjξ

]
∆vji − rjη

[
ζ cosλj − ψ sinλj√

1− ζ2 − ψ2

]
∆vjc

)
(71)

∆ηj =
1

h

(
p sinλj ∆vjr +

[
(p+ rj) cosλj + rjη

]
∆vji + rjξ

[
ζ cosλj − ψ sinλj√

1− ζ2 − ψ2

]
∆vjc

)
(72)

∆ζj =
rj

2h
√

1− ζ2 − ψ2

[
(1− ζ2) sinλj − ζψ cosλj

]
∆vjc (73)

∆ψj =
rj

2h
√

1− ζ2 − ψ2

[
(1− ψ2) cosλj − ζψ sinλj

]
∆vjc (74)

where the subscript j denotes conditions at the execution of the jth burn; parameters without this subscript, including
the nonsingular elements of the maneuvering spacecraft, are fixed at the beginning of the maneuver sequence in
Equations (70)-(74). As this piecewise-constant assumption neglects the influence of each impulse on the nonsingular
elements, this control strategy is designed to significantly reduce, not completely eliminate, errors in the nonsingular
elements over a single revolution. Multiple correction orbits may be readily employed to fully nullify the errors ∆e if
desired, by fixing the residual errors at the beginning of each correction orbit, and implementing an updatedN -impulse
maneuver sequence for the current revolution, computed as follows.

For compactness, corrections to the elements due to the jth burn in Equations (70)-(74) are rewritten as

∆aj = ∆arj∆vjr + ∆aij∆v
j
i (75)

∆ξj = ∆ξrj ∆vjr + ∆ξij∆v
j
i + ∆ξcj∆vjc (76)

∆ηj = ∆ηrj∆vjr + ∆ηij∆v
j
i + ∆ηcj∆vjc (77)

∆ζj = ∆ζcj∆vjc (78)

∆ψj = ∆ψc
j∆vjc (79)

bIn this sense, the N -impulse sequence may be treated as a discretization of a general continuous, low-thrust control effort.
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where the following definitions have been used:

∆arj ≡
2a2

h
(η sinλj − ξ cosλj) (80)

∆aij ≡
2a2p

hrj
(81)

∆ξrj ≡ −
p

h
cosλj (82)

∆ξij ≡
1

h

[
(p+ rj) sinλj + rjξ

]
(83)

∆ξcj ≡ −
rjη

h

[
ζ cosλj − ψ sinλj√

1− ζ2 − ψ2

]
(84)

∆ηrj ≡
p

h
sinλj (85)

∆ηij ≡
1

h

[
(p+ rj) cosλj + rjη

]
(86)

∆ηcj ≡
rjξ

h

[
ζ cosλj − ψ sinλj√

1− ζ2 − ψ2

]
(87)

∆ζcj ≡
rj

2h
√

1− ζ2 − ψ2

[
(1− ζ2) sinλj − ζψ cosλj

]
(88)

∆ψc
j ≡

rj

2h
√

1− ζ2 − ψ2

[
(1− ψ2) cosλj − ζψ sinλj

]
(89)

The total element corrections ∆e =
∑N

j=1 ∆ej due to the N impulses executed in the correction orbit become


∆a
∆ξ
∆η
∆ζ
∆ψ

 =


∆ar1 ∆ai1 0 . . . ∆arj ∆aij 0 . . . ∆arN ∆aiN 0

∆ξr1 ∆ξi1 ∆ξc1 . . . ∆ξrj ∆ξij ∆ξcj . . . ∆ξrN ∆ξiN ∆ξcN
∆ηr1 ∆ηi1 ∆ηc1 . . . ∆ηrj ∆ηij ∆ηcj . . . ∆ηrN ∆ηiN ∆ηcN

0 0 ∆ζc1 . . . 0 0 ∆ζcj . . . 0 0 ∆ζcN
0 0 ∆ψc

1 . . . 0 0 ∆ψc
j . . . 0 0 ∆ψc

N





∆v1
r

∆v1
i

∆v1
c

...
∆vjr
∆vji
∆vjc

...
∆vNr
∆vNi
∆vNc



(90)

which may be written more compactly in the following form:

∆e = [B(ej)]∆vseq (91)

The objective of this feedback control strategy is to extract the N -impulse burn sequence ∆vseq that satisfies Equa-
tion (91) and simultaneously minimizes the fuel cost required to perform the corrective sequence. Note that [B(ej)] is
of dimension 5× 3N and cannot be inverted. To obtain the fuel-optimal N -impulse sequence, the following nonlinear
programming (NLP) problem governing this feedback control strategy must be solved:

minimize
∆vseq

J ≡
N∑
j=1

||∆vj || =
N∑
j=1

√
∆vjr∆vjr + ∆vji ∆vji + ∆vjc∆vjc

subject to G ≡ [B(ej)]∆vseq −∆e = 0

(92)
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The solution to Equation (92) provides the minimum-fuel N -impulse sequence that mitigates the fixed errors ∆e
specified in the nonsingular elements. The gradient ∂J/∂∆vseq of the objective function thus follows as

∂J

∂∆vseq
=

(
∆vT

1

||∆v1||
. . .

∆vT
j

||∆vj ||
. . .

∆vT
N

||∆vN ||

)T

(93)

and the Jacobian ∂G/∂∆vseq of the equality constraints within Equation (91) follows from Equation (92) as

∂G

∂∆vseq
= [B(ej)] (94)

For this study, MATLAB’s constrained minimization solver fmincon is utilized with the active set algorithmc to ob-
tain a solution to the NLP problem provided in Equation (92). At the beginning of the correction orbit, the nonsingular
element errors ∆e are fixed, and [B(ej)] is precomputed with the given longitude increments:

λj = f0 + jf∆v + ω + Ω, j = 1, 2, . . . , N (95)

where f0 is the true anomaly at the beginning of the maneuver sequence. The fuel-optimal maneuver sequence
∆vseq is then achieved by solving Equation (92) with fmincon, and is executed during the current revolution
to mitigate the nonsingular element errors ∆e. For the test cases considered in this research, an initial guess of
∆vseq ≡ (∆v1, . . . ,∆vj , . . . ,∆vN )T where ∆vj = (1, 1, 1)T m/s ∀ j = 1, 2, . . . , N is used for initializing the
fmincon optimizer. As this initial guess is not guaranteed to be suitable for general scenarios, continuing efforts are
focused on determining appropriate initial guesses for the maneuver sequence, to ensure optimizer convergence to a
near-global minimum for the specified N -impulse control strategy.d

IV.B Examples of Control Strategy
Three test cases are presented to demonstrate the validity of the N -impulse control strategy developed above in

Section IV.A. For simplicity, the deputy and chief are assumed to begin at the same location on equivalent orbits –
therefore, the following examples simulate a deployment sequence in which the deputy is maneuvered to a different
orbit relative to the chief. Since nonsingular elements are less intuitive to visualize, classic orbit element differences
are specified for the test examples; the classical differences are converted into nonsingular differences required by this
N -impulse control strategy. Thus, the nonsingular element set is used here as an “under-the-hood” mechanism for
avoiding singularities in the variational equations for the classical elements. Note that the inertial J2000 frame is used
for this control implementation – the optimal maneuver sequence must therefore be rotated from the local orbit frame
to the inertial frame for integration and burn execution.

IV.B.1 Example 1: Inclination Change

The first example examines the case of an inclination change, in which it is known from basic orbit mechanics that
the most efficient location for a plane change is at the equator crossing.10 The initial deputy and desired conditions
simulated for this example are provided in Table 2. Impulses are specified to occur every f∆v = 10◦ for one revolution,
such that N = 36 for this example. The optimal maneuver sequence is shown in Figure 4, and the corresponding error
history of the classical orbit elements during execution of this sequence is shown in Figure 5. As anticipated, the radial
and in-track burns remain small, while the cross-track burn spikes at the positions of the descending and ascending
nodes, to raise the orbital plane and nullify all element errors. The total fuel cost for the sequence is ∆vcost = 5.376
cm/s, slightly larger than the single-impulse solution17

∆v1-burn = 2vn sin
∆i

2
≈ 5.367 cm/s (96)

where vn is the spacecraft velocity magnitude at the node and ∆i = 0.001◦ is the specified inclination change.
Therefore, the control strategy approximately replicates the optimal single-impulse solution for this example.

cSee fmincon documentation for explanation: http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html
dNote that the optimizer does not vary N or the impulse locations in this formulation – only the burn magnitudes are varied.
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Table 2: Initial and desired conditions for Example 1.
Element Deputy Desired ∆ecoe

a 42164 km 42164 km 0 km
e 0.0001 0.0001 0
i 10◦ 10.001◦ 0.001◦

Ω 0◦ 0◦ 0◦

ω 0◦ 0◦ 0◦

f0 0◦ N/A N/A
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Figure 4: Fuel-optimal burn sequence determined by feedback control strategy for Example 1.
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Figure 5: Error history of classical orbit elements during burn sequence execution for Example 1.

IV.B.2 Example 2: Circularizing at GEO

The second example examines the case of orbit raising and circularizing at the GEO altitude; such a transfer is
useful when inserting into a near-geosynchronous orbit from an elliptic geostationary transfer orbit (GTO). The initial
deputy and desired conditions simulated for this example are provided within Table 3. Impulses are specified to occur
every f∆v = 30◦ for three revolutions, such that N = 12 burns per correction orbit for this example. The optimal
maneuver sequence is shown in Figure 6, and the corresponding error history of the classical orbit elements during
execution of this sequence is illustrated in Figure 7. For this solution, the in-track impulse magnitudes sharply increase
at the descending and ascending nodes of the first revolution to circularize the orbit, and the radial burn magnitudes
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sharply increase at the extreme latitudes of the second revolution to raise the orbit by nullifying errors in the semi-
major axis. After execution of this optimal burn sequence, errors in the Euler angles Ω, i, ω are zeroed. The fuel cost
for this solution is ∆vcost = 15.70 m/s.

Table 3: Initial and desired conditions for Example 2.
Element Deputy Desired ∆ecoe

a 42164 km 42164.1 km 0.1 km
e 0.01 0 −0.01
i 0.001◦ 0.001◦ 0◦

Ω 0◦ 0◦ 0◦

ω 0◦ 0◦ 0◦

f0 0◦ N/A N/A
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Figure 6: Fuel-optimal burn sequence determined by feedback control strategy for Example 2.

0 1 2 3
−400

−200

0

200

0 1 2 3
−10

−5

0

5 x 10−3

0 1 2 3
−4

−2

0

2 x 10−7

0 1 2 3
−0.01

0

0.01

0.02

0 1 2 3
−200

−100

0

100

0 1 2 3
−100

0

100

200

Number of Revolutions Number of Revolutions Number of Revolutions

�
a

E
rr

o
r

(k
m

)

�
e

E
rr

o
r

�
i

E
rr

o
r

(d
e
g
)

�
⌦

E
rr

o
r

(d
e
g
)

�
!

E
rr

o
r

(d
e
g
)

f
H

is
to

ry
(d

e
g
)

Figure 7: Error history of classical orbit elements during burn sequence execution for Example 2.

IV.B.3 Example 3: General Orbit Transfer

The third example examines the case of a general orbit transfer in which errors in the elements (a, e, i,Ω, ω) are
present and require correction with a multi-revolution maneuver sequence. The initial deputy and desired conditions
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simulated for this example are provided in Table 4. Impulses are specified to occur every f∆v = 5◦ for three revolu-
tions, such that N = 72 per correction orbit for this example. The optimal maneuver sequence is shown in Figure 8,
and the corresponding error history of the classical orbit elements during execution of this sequence is illustrated in
Figure 9. For this maneuver solution, burn magnitudes in all three orbit frame directions sharply increase at the as-
cending and descending nodes during the first revolution, nullifying the errors in eccentricity and inclination. The
semi-major axis is corrected after the second revolution, and the Euler angles Ω and ω are corrected after the complete
three-revolution sequence. Note that the true anomaly deviates sizably by ±2◦ during execution – a phasing maneu-
ver should thus be performed after this sequence to correct the true anomaly as desired. The total fuel cost for this
maneuver sequence is ∆vcost = 17.63 m/s.

Table 4: Initial and desired conditions for Example 3.
Element Deputy Desired ∆ecoe

a 42164 km 42164.1 km 0.1 km
e 0.2 0.21 0.01
i 10◦ 10.1◦ 0.1◦

Ω 0◦ 0.1◦ 0.1◦

ω 0◦ 0.1◦ 0.1◦

f0 0◦ N/A N/A
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Figure 8: Fuel-optimal burn sequence determined by feedback control strategy for Example 3.

V Conclusion
An N -impulse feedback control law has been developed to mitigate specified errors in a set of nonsingular orbital

element differences between a chief and deputy spacecraft in the geosynchronous regime. The linear mapping between
these nonsingular element differences and the Cartesian Hill frame state of the deputy was derived, and the Gaussian
variational equations for these nonsingular elements were developed to construct a basis for the presented feedback
control methodology. Using this N -impulse strategy, a near-optimal burn sequence may be quickly determined to pro-
vide an estimate of appropriate initial conditions for more complex nonlinear optimization algorithms. By specifying
impulses to occur every f∆v in true anomaly, this strategy “detects” fuel-optimal burn locations for general transfers
in which the optimal burn locations are unknown, such that ideal initial conditions for a nonlinear optimizer seeking a
two or three-burn solution are discerned.
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