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Abstract
Dynamics development for free floating bodies in space involves describing how the body moves and can be

complex for multi-body systems. If the body is assumed rigid, the change in mass properties is trivial because they do
not change with respect to the body. However, if this is assumption cannot be made, describing the change in mass
properties is critical. A key aspect of this variation is the change in the inertia tensor of the composite spacecraft.
The transport theorem of vectors is widely utilized for dynamics development but is not well suited for simplification
of the expression for the time rate of change of the inertia tensor. In this paper, the transport theorem of the inertia
tensor is derived. A dynamics derivation is included and highlights the simplifications and time savings gained by the
application of this tool.

1. Introduction

Spacecraft are becoming increasingly complex with po-
tentially multiple moving components on board. Some
examples of these articulating bodies on spacecraft are so-
lar arrays, high gain antennas, robotic manipulators, and
instrument payloads. Depending on the size of these com-
ponents, the impact on the spacecraft from the relative
motion of the articulating bodies can be substantial. This
necessitates the ability to model the physics behind this
phenomenon.

When deriving the equations of motion of motion for
spacecraft dynamics, the use of the Transport Theorem1

for vectors is common place. However, when deriving
equations of motions for multi-body spacecraft systems,
using the vector based Transport Theorem for the inertia
tensor requires extensive algebra. A Transport Theorem
for the inertia tensor is introduced in this paper and ex-
tends the work seen in References.2, 3

The utility of the inertia Transport Theorem is high-
lighted by an example provided in this paper and is com-
pared to using the vector based Transport Theorem. The
application of this theorem is broad for multi-body dy-
namics.

2. Derivation of Inertia Transport Theorem

Figure 1 shows an arbitrary body moving with respect to
an inertial coordinate system N . For generality, assume

the body is non-rigid and has variable density across its
volume. A non-inertial coordinate system B is coincident
with the time-varying body Center-Of-Mass (COM) lo-
cated at position Rc. The body rotates with angular ve-
locity ωB{N relative to the inertial frame. All possible
deformations of the body are contained within the volu-
metric boundary V shown.

Fig. 1: Arbitrary rotating body

A differential mass element dm is located at position
r relative to the body COM. The angular velocity Hc of
the body about its COM is calculated according to Eq. 1.
The method presented below works as well for an arbi-
trary, non-COM reference point, but the resulting terms
and complications are immaterial to the purpose of this
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paper.

Hc “

ż

V

r ˆ 9rdm (1)

Substituting the well-known Transport Theorem,1 the in-
ertial derivative

N d
dtr “ 9r is calculated in terms of the

B-frame derivative
B d

dtr “ r1.

Hc “

ż

V

r ˆ pr1 ` ωB{N ˆ rqdm (2)

Distributing the integral over the summation yields a two-
term expression for the body angular momentum.

Hc “

ż

V

r ˆ r1dm `

ż

V

r ˆ pωB{N ˆ rqdm

“ Hcdef ` Hcrot (3)

The first term in Eq. 3 accounts for angular momentum
from deformation of the body and is calculable as-is given
a model for how the body deforms. The second term is the
angular momentum resulting from the body undergoing
rotational motion. This is the term of focus.

Hcrot “

ż

V

r ˆ pωB{N ˆ rqdm (4)

The cross product is a linear operator and can therefore
be represented as a matrix. In this case, this matrix is
skew-symmetric, giving rise the the cross product’s anti-
commutative nature.

ωB{N ˆ r “ rrωB{N sr “ ´rrrsωB{N

rrrs “

»

–

0 ´r3 r2
r3 0 ´r1

´r2 r1 0

fi

fl (5)

Substituting Eq. 5 into 4 and taking the mass-independent
angular velocity outside the integral yields the well-
known expression for the rotating-body angular momen-
tum.

Hcrot “ ´

ż

V

rrrs 2dm ωB{N “ rIcsωB{N (6)

The inertia tensor equation is determined by inspection of
Eq. 6.

rIcs “ ´

ż

V

rrrs 2dm (7)

The dynamics of the arbitrary body shown in Figure 1
is calculated through the well known equation

9Hc “ 9Hcdef ` 9Hcrot “ Lc (8)

where Lc is the torque on the body about its COM. As-
suming models for deformations of and torques on the
body, only the rotating angular momentum component’s
derivative remains unknown.

9Hcrot “ r 9IcsωB{N ` rIcs 9ωB{N (9)

The latter term in Eq. 9 is recognized as the rigid-body
angular momentum component and can be evaluated via
integration of the equations of motion in Eq. 8. The first
term, however, presents a significant challenge. In most
cases, the modeled body is assumed to consist of multi-
ple rigid bodies undergoing relative motion. This enables
calculation of r 9Ics as a sum of contributions from each
rigid body translated to the body COM via parallel axis
theorem. For an arbitrary shape like that in Figure 1, this
simplification cannot be applied. Instead, an expression
for r 9Ics must be determined.

The inertia expression shown in Eq. 7 does not im-
mediately offer any promise. The only obviously prac-
tical solution is to evaluate term-by-term once the iner-
tia is expressed in a frame. However, this numerical ap-
proach precludes the use of convenient linear algebra tools
that massively simplify dynamics derivations and analy-
ses. Instead, an identity is derived that enables derivation
of a simple expression for r 9Ics.

The cross product operator shown in Eq. 5 is squared to
yield an element-by-element expression for the integrand
in Eq. 7.

rrrs 2 “

»

–

´r22 ´ r23 r1r2 r1r3
r1r2 ´r21 ´ r23 r2r3
r1r3 r2r3 ´r21 ´ r22

fi

fl (10)

Important to note in this equation is that no frame has been
specified, meaning that the elements ri are indeterminate.
Applying the magnitude identity ´r2k ´ r2j “ r2i ´ r2

yields a vector equation for the inertia integrand.

rrrs 2 “

»

–

r21 ´ r2 r1r2 r1r3
r1r2 r22 ´ r2 r2r3
r1r3 r2r3 r23 ´ r2

fi

fl

“ rrT ´ rTrrI3ˆ3s (11)

Here, rI3ˆ3s indicates the three-dimensional identity ma-
trix. Substituting this vector equation into Eq. 7 and dif-
ferentiating yields

r 9Ics “ ´

N d
dt

ż

V

rrrs 2dm

“ ´

N d
dt

ż

V

`

rrT ´ rTrrI3ˆ3s
˘

dm (12)

The three operators in Eq. 12 (differentiation, integra-
tion, and summation) are all linear, which allows for com-
mutation of the first two operators and distribution of the
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differentiation over the sum. This enables focus on the
integrand rather than the full expression.

N d
dt

rrrs 2 “

´

9rrT ` r 9rT ´ 2rT 9rrI3ˆ3s

¯

(13)

Another substitution of transport theorem provides an ex-
pression for the integrand’s inertial-frame derivative ex-
pressed in terms of B-frame derivatives.

N d
dt

rrrs 2 “ pr1 ` rrωB{N srqrT

` rpr1 ` rrωB{N srqT ´ 2rT pr1 ` rrωB{N srqrI3ˆ3sq

(14)

Eq. 14 is further simplified by distributing the outer and
inner products over the sums and collecting terms contain-
ing r1.

N d
dt

rrrs 2 “ r1rT ` rr1 T ´ 2rTr1rI3ˆ3sq

`
`

rrωB{N srrT ` rrT rrωB{N sT ´ 2rT rrωB{N sr
˘

(15)

The first bracketed term is recognized as the B-frame
derivative of the integrand. The last term in the sec-
ond bracket is zero because the cross product is orthog-
onal to both its arguments. At this stage, it is neces-
sary add the zero matrix to the equation in the form
r03ˆ3s “ ´rTrrrωB{N s`rTrrrωB{N s “ ´rrωB{N srTr´

rTrrrωB{N sT . In this equality, the commutivity of scalars
and skew-symmetric nature of the cross product are lever-
aged for simplicity.

N d
dt

rrrs 2 “

B d
dt

rrrs 2 `
`

rrωB{N srrT ´ rrωB{N srTr
˘

`
`

rrT rrωB{N sT ´ rTrrrωB{N sT
˘

“

B d
dt

rrrs 2 ` rrωB{N s
`

rrT ´ rTrrI3ˆ3s
˘

`
`

rrT ´ rTrrI3ˆ3s
˘

rrωB{N sT

“

B d
dt

rrrs 2 ` rrωB{N srrrs 2 ` rrrs 2rrωB{N sT (16)

Inserting this equation into Eq. 12 and performing minor
operations yields

r 9Ics “ ´

B d
dt

ż

V

rrrs 2dm

´ rrωB{N s

ż

V

rrrs 2dm ´

ż

V

rrrs 2dm rrωB{N sT (17)

Finally, the transport theorem for the inertia tensor is pre-
sented.2, 3 Note, the choice of frames is arbitrary.

r 9Ics “ rIcs1 ` rrωB{N srIcs ` rIcsrrωB{N sT (18)

Plugging this solution into Eq. 9 and applying a rigid body
assumption (i.e. rIcs1 “ r0s) yields the well-known angu-
lar momentum derivative.

9Hcrot “ rIcs 9ωB{N `
`

rrωB{N srIcs ` rIcsrrωB{N sT
˘

ωB{N

“ rIcs 9ωB{N ` rrωB{N srIcsωB{N (19)

3. Spacecraft Dynamics Derivation Example

Fig. 2: Diagram of spacecraft with a single spinning body

A spacecraft dynamics example of a rigid hub con-
nected to a single rigid spinning body is included to show
the utility of the inertia Transport Theorem. The devel-
opment considers the body frame and the spinning body
frame. The body frame is denoted B. The basis vectors of
the body frame are

B : tB, b̂1, b̂2, b̂3u (20)

The spinning body frame is denoted S. Parameters re-
lating to the spacecraft hub are denoted with a subscript
text B. The hub and spinning body are allowed center of
mass offsets from their respective coordinate frame ori-
gins. The hub’s center of mass location is labeled as Bc.
This location is described with respect to the body frame
origin as rBc{B . The spinning body is also allowed a gen-
eral center of mass offset from the spinning body frame
origin. This location is labeled as Sc and is located with
respect to the spinning body frame origin as rSc{S . The
time-varying center of mass of the entire system is de-
noted C, and the vector from the body frame origin to
point C is labeled c. The spinning body rotates with re-
spect to the hub about a body frame fixed axis ŝs with an
angular velocity of Ω.

For this paper, the spacecraft rotational EOM and spin-
ning body EOM is derived, but for completeness, the
spacecraft translational EOM is included:

msc:rB{N ´ mscrc̃s 9ωB{N ´ mSrr̃Sc{Ssŝ 9ΩS

“ F ´ 2mscrω̃B{N sc1 ´ mscrω̃B{N srω̃B{N sc

´ mSrω̃S{Bsr1
Sc{S (21)
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The derivation of rotational EOM starts with the angu-
lar momentum of the spacecraft about point B.

H sc,B “ Hhub,B ` HS,B (22)

The inertial time derivative of angular momentum when
the body fixed coordinate frame origin is not coincident
with the center of mass of the body is

9H sc,B “ LB ` msc:rB{N ˆ c (23)

where LB is the vector sum of external torques acting
on the spacecraft. Differentiating Eq. (22), and using the
Transport Theorem,1 the inertial derivative of the space-
craft angular momentum is expressed as

9H sc,B “ H 1
sc,B ` ωB{N ˆ H sc,B (24)

Starting with the definition of the angular momentum of
the hub about point B

Hhub,B “ rIhub,BcsωB{N ` mhubrBc{B ˆ 9rBc{B (25)

Applying the Transport Theorem for 9rBc{B yields

Hhub,B “ rIhub,BcsωB{N

` mhubrBc{B ˆ pωB{N ˆ rBc{Bq (26)

Hhub,B can be further simplified to the following expres-
sion

Hhub,B “ rIhub,BcsωB{N ` mhubrr̃Bc{Bsrr̃Bc{BsTωB{N
(27)

The parallel axis theorem for the inertia of the hub about
point B is

rIhub,Bs “ rIhub,Bc
s ` mhubrr̃Bc{Bsrr̃Bc{BsT (28)

Using the expression for rIhub,Bs, Hhub,B can be further
simplified to

Hhub,B “ rIhub,BsωB{N (29)

Following a similar pattern, the following derivation is
completed for the spinning body:

HS,B “ rIS,ScspωB{N ` ωS{Bq

` mSrSc{B ˆ pr1
Sc{B ` ωB{N ˆ rSc{Bq (30)

which simplifies to

HS,B “ rIS,BsωB{N ` rIS,ScsωS{B `mSrSc{B ˆ r1
Sc{B

(31)
Combining the two expression for angular momentum in
Eq. (22) yields

H sc,B “ rIsc,BsωB{N `rIS,Sc
sωS{B `mSrSc{B ˆr1

Sc{B

(32)

Taking the body frame relative time derivative of H sc,B
yields

H 1
sc,B “ rIsc,Bs1ωB{N ` rIsc,Bs 9ωB{N ` rIS,Sc

s1ωS{B

` rIS,Scs 9Ωŝs ` mSrSc{B ˆ r2
Sc{B (33)

The inertia of the spinning body about point B is defined
as

rIS,Bs “ rIS,Sc
s ` mSrr̃Sc{Bsrr̃Sc{BsT (34)

With those descriptions, the body frame relative time
derivative of the inertia of rIS,Bs can be defined as

rIS,Bs1 “ rIS,Scs1`mS

´

rr̃1
Sc{Bsrr̃Sc{BsT `rr̃Sc{Bsrr̃1

Sc{BsT
¯

(35)
Using the transport theorem of the inertia tensor, the com-
putation of rIS,Scs1 simply yields

rIS,Scs1 “ rω̃S{BsrIS,Scs ` rIS,Scsrω̃S{BsT (36)

Combining the individual expressions into the single an-
gular momentum expression and combining like terms:

mscrc̃s:rB{N ` rIsc,Bs 9ωB{N ` rIS,Sc
sŝs 9Ω

`mSrSc{Bˆr2
Sc{B “ LB´rIsc,Bs1ωB{N ´rIS,Scs1ωS{B

´ ωB{N ˆ H sc,B (37)

Pull out second order derivatives for spinning body and
rearranging yields

mscrc̃s:rB{N ` rIsc,Bs 9ωB{N `

´

rIS,Sc
s

´ mSrr̃Sc{Bsrr̃Sc{Ss

¯

ŝs 9Ω “ LB ´ rω̃B{N sH sc,B

´rIsc,Bs1ωB{N ´rIS,Scs1ωS{B´mSrr̃Sc{Bsrω̃S{Bsr1
Sc{S

(38)

rIS,Sc
s1 can be replaced to further simplify and arrive at

the final form of the rotation EOM.

mscrc̃s:rB{N ` rIsc,Bs 9ωB{N `

´

rIS,Sc
s

´mSrr̃Sc{Bsrr̃Sc{Ss

¯

ŝs 9Ω “ LB´rω̃B{N sH sc,B´rIsc,Bs1ωB{N

´ rω̃S{BsrIS,ScsωS{B ´ mSrr̃Sc{Bsrω̃S{Bsr1
Sc{S (39)

Finally, the spinning body EOM starts with the modi-
fied Euler’s equation:

9HS,S “ LS ` mS:rS{N ˆ rSc{S (40)

The angular momentum of the spinner about point S is:

HS,S “ rIS,SsωS{N (41)
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Finding the inertial derivative of the previous expression
yields

9HS,S “ rIS,Ss1ωS{N `rIS,Ss
`

9ωB{N ` 9ΩSŝ
˘

`ωB{N ˆHS,S
(42)

Using the inertia transport theorem, rIS,Ss1 is simply

rIS,Ss1 “ rω̃S{BsrIS,Ss ` rIS,Ssrω̃S{BsT (43)

Which completes the expression for 9HS,S

9HS,S “ rIS,Ss 9ωB{N `rIS,Ssŝ 9ΩS`rIS,Ss1ωS{N `rω̃B{N sHS,S
(44)

Finally, the dynamics of the spinning body can be simpli-
fied to:

rIS,Ss 9ωB{N ` rIS,Ssŝ 9ΩS ` rIS,Ss1ωS{N

` rω̃B{N s “ LS ` mS:rS{N ˆ rSc{S (45)

The complexity of deriving equations of motion for
multi-body spacecraft dynamics using only the vector
Transport Theorem can be seen in Reference.4

4. Alternate Derivation of Inertia Transport Theorem

This derivation uses the basis vector definition of the in-
ertia tensor to derive the transport theorem.

rIs “ I11b̂1b̂
T

1 ` I12b̂1b̂
T

2 ` I13b̂1b̂
T

3 ` I21b̂2b̂
T

1

`I22b̂2b̂
T

2 `I23b̂2b̂
T

3 `I31b̂3b̂
T

1 `I32b̂3b̂
T

2 `I33b̂3b̂
T

3

(46)

Taking the inertial derivative of rIs yields

r 9Is “ 9I11b̂1b̂
T

1 ` 9I12b̂1b̂
T

2 ` 9I13b̂1b̂
T

3 ` 9I21b̂2b̂
T

1

` 9I22b̂2b̂
T

2 ` 9I23b̂2b̂
T

3 ` 9I31b̂3b̂
T

1 ` 9I32b̂3b̂
T

2 ` 9I33b̂3b̂
T

3

` I11
9̂
b1b̂

T

1 ` I12
9̂
b1b̂

T

2 ` I13
9̂
b1b̂

T

3 ` I21
9̂
b2b̂

T

1

` I22
9̂
b2b̂

T

2 ` I23
9̂
b2b̂

T

3 ` I31
9̂
b3b̂

T

1 ` I32
9̂
b3b̂

T

2 ` I33
9̂
b3b̂

T

3

` I11b̂1
9̂
bT1 ` I12b̂1

9̂
bT2 ` I13b̂1

9̂
bT3 ` I21b̂2

9̂
bT1

`I22b̂2
9̂
bT2 `I23b̂2

9̂
bT3 `I31b̂3

9̂
bT1 `I32b̂3

9̂
bT2 `I33b̂3

9̂
bT3
(47)

Combining body frame relative time derivatives simplifies
the expression to

r 9Is “ rIs1 ` I11pω ˆ b̂1qb̂
T

1 ` I12pω ˆ b̂1qb̂
T

2 `

I13pω ˆ b̂1qb̂
T

3 ` I21pω ˆ b̂2qb̂
T

1

` I22pω ˆ b̂2qb̂
T

2 ` I23pω ˆ b̂2qb̂
T

3

` I31pω ˆ b̂3qb̂
T

1 ` I32pω ˆ b̂3qb̂
T

2 ` I33pω ˆ b̂3qb̂
T

3

` I11b̂1pω ˆ b̂1qT ` I12b̂1pω ˆ b̂2qT `

I13b̂1pω ˆ b̂3qT ` I21b̂2pω ˆ b̂1qT

` I22b̂2pω ˆ b̂2qT ` I23b̂2pω ˆ b̂3qT

`I31b̂3pωˆ b̂1qT `I32b̂3pωˆ b̂2qT `I33b̂3pωˆ b̂3qT

(48)

The following expressions are useful for simplification

I11pω ˆ b̂1qb̂
T

1 ` I11b̂1pω ˆ b̂1qT “

I11

B»

–

0 0 0
ω3 0 0

´ω2 0 0

fi

fl ` I11

B»

–

0 ω3 ´ω2

0 0 0
0 0 0

fi

fl (49)

rω̃sb̂1b̂
T

1 “

B»

–

0 ´ω3 ω2

ω3 0 ´ω1

´ω2 ω1 0

fi

fl

B»

–

1 0 0
0 0 0
0 0 0

fi

fl

“

B»

–

0 0 0
ω3 0 0

´ω2 0 0

fi

fl (50)

Using these operations and combining like terms yield

r 9Is “ rIs1`rω̃s

´

I11b̂1b̂
T

1 `I12b̂1b̂
T

2 `I13b̂1b̂
T

3 `I21b̂2b̂
T

1

` I22b̂2b̂
T

2 ` I23b̂2b̂
T

3

` I31b̂3b̂
T

1 ` I32b̂3b̂
T

2 ` I33b̂3b̂
T

3

¯

`

´

I11b̂1b̂
T

1 ` I12b̂1b̂
T

2 ` I13b̂1b̂
T

3 ` I21b̂2b̂
T

1

` I22b̂2b̂
T

2 ` I23b̂2b̂
T

3

` I31b̂3b̂
T

1 ` I32b̂3b̂
T

2 ` I33b̂3b̂
T

3

¯

rω̃sT (51)

which can be simplified to the inertia tensor transport the-
orem

r 9Ics “ rIcs1 ` rrωB{N srIcs ` rIcsrrωB{N sT (52)

5. Conclusion

The Transport Theorem for the inertia tensor is derived
and the utility is highlighted by showing the derivation
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for a spacecraft dynamics example. Using this theorem,
the required algebra is much less and the resulting formu-
lation is simpler. This inertia Transport Theorem can be
used broadly for spacecraft dynamics development and is
general, allowing it be applied to more complex spacecraft
dynamics problems.
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