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Abstract

The Basilisk astrodynamics software architecture is being designed to be capable of both faster-than realtime simu-
lations, including repeatable Monte-Carlo simulation options, as well as providing real-time options for hardware-in-
the-loop simulations. The Basilisk package is designed as a set of Python modules written in C/C++ which allows for
the ease of scripting and reconfigurability of Python while still providing the execution speed of C/C++. The software
is being developed jointly by the University of Colorado Autonomous Vehicle Systems laboratory and the Laboratory
for Atmospheric and Space Physics. The resulting framework is targeted for both astrodynamics research as well as
sophisticated mission-specific vehicle simulations that include hardware-in-the-loop scenarios. This paper discusses
how Basilisk is used to simulate attitude actuation devices such as reaction wheels (RWs) and attitude control system
(ACS) thrusters. A modular framework allows for the these devices to be readily included in the dynamic simulation,
and thus test candidate Attitude Determination and Control System (ADCS) control strategies. The RWs are modeled
to include misalignment and mass imbalance properties. The thruster model simulates a minimum thruster impulse,
thruster on and off ramping, as well as a finite thruster servo frequency. The paper discusses how the RW and ACSs
components are simulated and analyzed for maneuvers such as a deep space sun-pointing attitudes with RWs, or a
Mars orbit insertion with the ACS thrusters.

1. Introduction

Analysis through simulation and hardware-in-the-loop
(HWIL) testing have become essentials of modern space-
craft attitude determination and control system (ADCS)
development. The primary benefits of using these tools
are improvement in the quality of design and testing by re-
ducing cost and duration of development. Factor of safety
for a design may be fine-tuned as needed by virtually test-
ing and verifying the spacecraft at failure conditions. In-
flight anomalies and “what if” situations may be explored
via Monte Carlo tools in pure simulation. HWIL allows
evaluation of hardware in a controlled, low-burden envi-
ronment to expose technical faults and spacecraft integra-
tion problems before millions of dollars are spent launch-
ing the system to space.1–3

Numerous spacecraft astrodynamics simula-
tion softwares exist and have various features and

strengths/weaknesses. State-of-the-art commerical-off-
the-shelf (COTS) and government-off-the-shelf (GOTS)
softwares each have unique strengths, but present limited
capability to provide a complete physically realistic
dynamical representation of a spacecraft capable of
being used for research with the purpose of ADCS
design analysis while allowing user-friendly, platform
independent interaction. Additionally, many of these
software solutions are prohibitively expensive for low-
budget missions or student development. Open-source
softwares/freeware may be poorly maintained and/or not
user friendly, requiring more time to setup and learn how
to use than is available for a particular mission. Most
importantly, few COTS/GOTS softwares single-handedly
allow for dually-integrated capabilities of realtime HWIL
testing and standalone faster than realtime simulation
with built-in repeatable Monte Carlo simulation tools in
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a cross-platform environment. Mathworks’s Simulink1

and National Instruments LabVIEW2 provide excellent
platforms for building quick models of control systems
for faster than realtime simulation and HWIL simulations.
Each of these softwares can even be used to produce
C code directly from their drag and drop environment
with the use of add-on packages. Downsides of these
softwares are lack of a built-in visualization, cost, and the
necessity of a fairly experienced user. Softwares such as
AGI’s Systems Toolkit3, a.i. solutions’s Freeflyer4, and
Applied Defense Solutions’s Spacecraft Design Tool5

all provide beautiful visualizations and highly efficient
standalone simulation tools, but are geared mainly
towards analysis and development of orbits, mission
design, and complex situational analysis. STK does
provide a six-degree-of-freedom option by providing for
state propagation of spacecraft attitude dynamics, but
relies on external torque generation and has no way of
implementing accurate sensor or actuator models during
its dynamic simulation. Furthermore, none of these three
software packages are conditioned for HWIL testing.
Softwares such as such as NASA’s Trick6 and CS’s
Orekit/Rugged7 are both specifically made for spacecraft
attitude dynamics simulation. These softwares fall short
of providing a fully-coupled dynamic representation of
a spacecraft with complex actuators such as reaction
wheels. Various other open-source softwares exist
for attitude dynamics simulation but are either poorly
documented, unmaintained, or lack critical features for
all-in-one ADCS development software.4

The Basilisk astrodynamics software is being de-
veloped by the University of Colorado Boulder’s Au-
tonomous Vehicle Systems (AVS) Laboratory and the
Laboratory for Atmospheric and Space Physics (LASP).
Basilisk provides deterministic, integrated faster than re-
altime simulation while at the same time providing HWIL
simulation capabilities using a modular and fast C/C++
architecture. This source code is then wrapped in Python
allowing the convenience of a fully scriptable Python user
interface. The modular architecture and fully-coupled dy-
namical representation allows for complex actuators such
as imbalanced reaction wheels to be simulated without
sacrificing accuracy. Basilisk has been used internally by
the University of Colorado/LASP for simulation of flex-
ible dynamics,5 fuel slosh,6 reaction wheel jitter,7 thrust
pulsing algorithm evaluation,8 guidance algorithm devel-
opment,9 and for analysis and support of ADCS sub-
system developments.

1 http://www.mathworks.com/products/simulink/
2 http://www.ni.com/labview/
3 http://www.agi.com/products/stk/
4 https://ai-solutions.com/freeflyer/
5 http://www.applieddefense.com/products-and-services/sdt/
6 https://github.com/nasa/trick
7 https://www.orekit.org/

This paper includes an overview of the Basilisk archi-
tecture and discussions of unique features. Actuator mod-
ules of Basilisk, including reaction wheels and thrusters,
are discussed within the context of both pure simulation
and FSW. An example of the Basilisk visualization and a
discussion of visualization options are included.

2. Basilisk Overview

The Basilisk framework has been designed from incep-
tion to support several different (often competing) require-
ments.

• Speed: Even though the system is operated through a
Python interface, the underlying simulation executes
entirely in C/C++ which allows for maximum execu-
tion speed. The requirement for the Mars mission are
sufficiently accurate vehicle simulation with at least
a 365x realtime speeds (“a year in a day”).

• Reconfiguration: The user interface executes na-
tively in Python which allows the user to change
task-rates, model/algorithm parameters, and output
options dynamically on the fly.

• Analysis: Python-standard analysis products like
numpy8 and matplotlib9 are actively used to facili-
tate rapid and complex analysis of data obtained in
a simulation run without having to stop and export
to an external tool. This capability also applies to the
Monte-Carlo engine available natively in the Basilisk
framework.

• HWIL: Basilisk provides synchronization to real-
time via clock tracking modules. This allows the
package to synchronize itself to one or more tim-
ing frames in order to provide deterministic behavior
in a realtime environment. External communication
is handled via the Boost library10 with ethernet cur-
rently available and serial planned in the near future.

Figure 1 shows the Basilisk logo. The name Basilisk was
chosen to reflect both the reptilian (Python) nature of the
product-design as well as a nod to the speed requirements
as the South American common basilisk runs so fast that
it can even run across water.

Figure 2 shows a diagram of the Basilisk software ar-
chitecture. The Python user interface layer allows the sim-
ulation to be easily reconfigured which allows the user
complete freedom in creating their own simulation mod-
ules and FSW modules. Scenario scripts utilizing the
user-defined simulation can be used to configure space-
craft properties, initial conditions, events, and various
simulation parameters such as timing. The Python user

8 http://www.numpy.org/
9 http://matplotlib.org/
10 http://www.boost.org
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Fig. 1: The Basilisk logo.

interface layer abstracts logging/analysis which allows a
single compilation of the source code to support com-
pletely different simulations. Most simulation modules
are written in C++ to allow for object-oriented develop-
ment while the FSW modules are written in C to allow for
easy portability to flight targets. Simulation modules and
FSW modules communicate through the message passing
interface (MPI), which is a singleton pattern. The MPI
allows data traceability and ease of test. Figure 3 shows
a MPI data map, which allows the user to visualize data
flow between modules. Modules are limited in their abil-
ity to subscribe to messages and write messages, thus set-
ting limitations on the flow of information and the power
of modules to control data generation. The messaging sys-
tem is also instrumented to track data exchange, allowing
the user to visualize exactly what data movement occurred
in a given simulation run. The Python interface to the
C/C++ layer relies on the Simplified Wrapper and Inter-
face Generator (SWIG) software1, a cross-platform, open-
source software tasked solely with interfacing C/C++ with
scripting languages. Basilisk is inherently cross-platform
in nature, currently used on Mac, Windows, and Linux
systems.

Basilisk has an accompanying visualization that uses
Qt2/OpenGL3 to visualize the spacecraft, planets, and var-
ious qualitative data and indicators for sensors and actua-
tors. Simulation events and device faults may be triggered
directly from the visualization.

3. Basilisk Actuator Simulation

This section discusses the actuator modules within
Basilisk to provide examples of core capabilities. Dis-
cussed are reaction wheel simulation model options, in-
cluding the simplified jitter model and fully-coupled jitter
model. Simulation module of discrete on/off thrusters

1 http://swig.org/
2 https://www.qt.io/
3 https://www.opengl.org/
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Fig. 2: Basilisk architecture diagram.

3.1 Simulating Reaction Wheels

The Basilisk software hosts multiple reaction wheel mod-
els of wheel mass imbalance induced angular jitter. The
imbalance models may be used mainly as an analysis
tool specifically for validating the requirements of imag-
ing, jitter sensitive instruments, and structural dynamics
of the spacecraft. A simplified imbalance model may be
enabled to obtain a quick estimate of the attitude distur-
bances caused by jitter. The simplified model applies
forces and torques to the spacecraft as external distur-
bances.10–12 This model, although sufficient for a rough
estimate, does not allow angular momentum and energy
to be conserved as basic physics says they must be.13

Basilisk has the option of enabling a fully-coupled reac-
tion wheel imbalance model that provides for physically
realistic analysis of wheel jitter. The fully-coupled jitter
model is a full dynamical representation of static and dy-
namic imbalance and incorporates the full inertia tensor
of the reaction wheel and center of mass location in order
to let jitter act as internal forces and torques, thus allow-
ing energy and momentum to be conserved.7 Figures 4-5
show sample data produced using Basilisk’s fully-coupled
reaction wheel jitter model. Figure 4 depicts the overall
effect of jitter from three reaction wheels by plotting prin-
ciple angle versus time. Figure 5 shows the effect of jitter
on the spacecraft body rates. Additionally, unlike the sim-
plified jitter model the dynamics also cause the reaction
wheels to be back-effected by jitter causing realistic fluc-
tuations in wheel speed to be modeled. Reaction wheel
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Fig. 3: Basilisk Message Passing Interface data map.
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Fig. 4: Angular jitter of the spacecraft for the fully-coupled re-
action wheel jitter simulation

jitter options are fully scriptable from the Python layer of
Basilisk.

3.2 Simulating Thrusters

Basilisk’s built-in thruster simulation module incorpo-
rates features such as on/off ramp, minimum impulse
bit, thruster servo limitations, and saturation. These fea-
tures are important for accurate simulation of temporal re-
strictions on thruster based actuation. On-ramping and
off-ramping are implemented to simulate inherent tran-
sient behaviors in the initial firing and shutting off of
the thrusters. Basilisk models these transients as first de-
gree functions dependent on thruster test data, which very
closely approximates the realistic behavior of thrusters.
The implementation of the thruster’s minimum impulse
bit further restricts the initial firing characteristics. The
minimum impulse bit is modeled as a minimum ON time
for the thrusters so that they may not fire less than this
amount of time.

4. Basilisk Actuator Control Evaluation

The FSW layer of Basilisk has a modular architecture
that allows multiple modules to be included and config-
ured at the Python user interface layer with the purpose
of testing candidate ADCS control and actuation strate-
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(a) x-axis angular velocity.

(b) y-axis angular velocity.

(c) z-axis angular velocity.

Fig. 5: Body rates of the spacecraft for the fully-coupled reac-
tion wheel jitter simulation.

gies. Included in this section are discussions of discrete
thruster firing modules and reaction wheel torque map-
ping schemes and signal conditioning/outlier rejection.

4.1 Thruster Pulsing Algorithms

A core feature of Basilisk is the ability to enable/disable
modules from the Python-level. As applied to thruster
pulsing algorithms, this allows the designer to trade dif-
ferent algorithms against each other by just setting flags
in the Python scenario script. Figure 6 shows a diagram
of thruster FSW modules, and how they connect to other
FSW modules and the simulation aspect of Basilisk. The
thrust mapping module is tasked with converting the con-
trol torque Lr into individual thrust force Fi commands
for each thruster. The thrust pulsing algorithms are pur-
posed with mapping desired thruster force to ON time
commands TONi

for each thruster. These algorithms are
a necessity since many spacecraft operate using discrete
ON/OFF thrusters that have operating characteristics such
as minimum pulse time and pulse time resolution. The
modularized architecture allows candidate ADCS control
strategies to be readily tested using different torque map-
ping schemes and thruster pulsing algorithms. The avail-
ability and ease of implementation of these algorithms
allows for optimization of propellant usage, thruster fire
count, and steady state pointing accuracy. Current thruster
pulsing modules implemented in Basilisk include multiple
pulse rounding methods and the Schmitt trigger method.8

Thrust mapping

Thrust pulsing
(Schmitt/rounding)

Simulation

Lr

Control

Toni

Fi

Fig. 6: Thruster FSW algorithms.

4.2 RW Torque Mapping and Signal Conditioning

Basilisk features multiple options for mapping attitude
control law torque to reaction wheel motor torque and ad-
ditional signal conditioning thereafter. Figure 7 shows a
diagram of reaction wheel FSW modules, and how they
connect to other FSW modules and the simulation aspect
of Basilisk. Reaction wheel torque mapping typically in-
volves using a minimum-norm inverse formulation to con-
vert the control torque Lr to individual reaction wheel
motor torque commands usi .

13 A power-optimal torque
mapping formulation allows for reduction of the overall
amount of energy and mechanical power required for a
redundant set of reaction wheels.14 An accompanying
power-optimal control law for a redundant reaction wheel
configuration may be implemented in cases where power
is especially limited, such as with small satellites.15 This
control law allows for energy recuperation and reduced
wheel speeds by applying reaction wheel torque null mo-
tion.

5. Simulation Example

5.1 Visualization

Basilisk has an accompanying visualization that allows
the user to observe the simulated spacecraft’s operations
realtime. Figure 8 shows an example of the visualization
with a spacecraft in Mars orbit. The control panel on the
right hand side allows the user to view sensor and actuator
data and trigger events. Reference frame axes may be en-
abled/disabled from the control panel. The visualization
also demonstrates thruster plumes and the field of view of
sensors such as star trackers and course sun sensors. Fig-
ure 9 is a demonstration of the Monte Carlo capabilities
of Basilisk. The plot provided shows body rates of the
spacecraft plotted versus time for a number of simulation
runs. The individual runs of the simulation are plotted
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Fig. 7: Reaction wheel FSW algorithms.

Fig. 8: Basilisk visualization example of a Mars orbiting space-
craft.

with different colors. This allows direct comparison of
simulation runs with varying initial conditions and testing
of worst case scenarios.

6. Conclusions

The general software architecture of the Basilisk as-
trodynamics software and specific modules of actuators
are described. It is shown that Basilisk offers many
of the same core benefits as Commercial-off-the-Shelf
(COTS)/Government-off-the-Shelf (GOTS) softwares and
is open-source, cross-platform, and has a fully-scriptable
user interface using the common programming language
Python. The discussion shows that Basilisk is able to sim-
ulate “a year in a day” due to its usage of C/C++ wrapped
by the Python scenario scripting layer using SWIG. Ad-
ditionally, Basilisk’s handling of spacecraft dynamics al-
lows for a fully-coupled, physically-realistic representa-
tion of the spacecraft’s motion under the influence of com-
plex dynamics such as imbalanced reaction wheels and
fuel slosh. It is the authors’ belief that the core-features

(a) x-axis angular velocity.

(b) y-axis angular velocity.

(c) z-axis angular velocity.

Fig. 9: Basilisk Monte Carlo simulation example data.

of Basilisk match the aggregate benefits of all other main-
tained open-source spacecraft dynamics projects. Future
work to be completed on Basilisk includes multiple space-
craft configurations with the purpose of formation flying
research.

Acknowledgements

Special thanks go to the other members of the Basilisk de-
velopment team supporting the presented developments,
including Cody Allard, Patrick Kenneally, Mar Cols Mar-
genet, and Manuel Diaz Ramos.

REFERENCES

[1] L. Slafer. The use of real-time, hardware-in-the-loop sim-
ulation in the design and development of the new hughes
hs601 spacecraft attitude control system. 1989.

[2] Jesse Leitner. Space technology transition using hardware
in the loop simulation. In Aerospace Applications Con-
ference, 1996. Proceedings., 1996 IEEE, volume 2, pages
303–311. IEEE, 1996.

[3] A. Ptak and K. Foundy. Real-time spacecraft simula-
tion and hardware-in-the-loop testing. In Real-Time Tech-
nology and Applications Symposium, 1998. Proceedings.
Fourth IEEE, pages 230–236. IEEE, 1998.

[4] Andrew J Turner. An open-source, extensible spacecraft
simulation and modeling environment framework. PhD
thesis, Citeseer, 2003.

[5] C. Allard, H. Schaub, and S. Piggott. General hinged solar
panel dynamics approximating first-order spacecraft flex-
ing. In AAS Guidance and Control Conference, Brecken-
ridge, CO, Feb. 5–10 2016. Paper No. AAS-16-156.

IAC-16-C1.1.4 Page 6 of 7



67th International Astronautical Congress, Guadalajara, Mexico.
Copyright c©2016 by the International Astronautical Federation. All rights reserved.

[6] C. Allard, M. Diaz Ramos, and H. Schaub. Spacecraft dy-
namics integrating hinged solar panels and lumped-mass
fuel slosh model. In AIAA SPACE 2016, Long Beach, CA,
Sep. 13–16 2016. Paper No. 2490836.

[7] J. Alcorn, C. Allard, and H. Schaub. Fully-coupled dynam-
ical jitter modeling of a rigid spacecraft with imbalanced
reaction wheels. In AIAA SPACE 2016, Long Beach, CA,
Sep. 13–16 2016. Paper No. 2490836.

[8] John Alcorn, Hanspeter Schaub, and Scott Piggott. At-
titude control performance analylsis using discretized
thruster with resdidual tracking. In AAS Guidance and
Control Conference, Breckenridge, CO, Feb. 5–10 2016.
Paper No. AAS-16-038.

[9] M. Cols Margenet, H. Schaub, and S. Piggott. Modular
attitude guidance development using the basilisk software
framework. In AIAA SPACE 2016, Long Beach, CA, Sep.
13–16 2016. Paper No. 2490836.

[10] F. L. Markley and J. L. Crassidis. Fundamentals Of Space-
craft Attitude Determination And Control, volume 33.
Springer, 2014.

[11] L. Liu. Jitter and basic requirements of the reaction wheel
assembly in the attitude control system. 2007.

[12] D.K. Kim. Micro-vibration model and parameter estima-
tion method of a reaction wheel assembly. Journal of
Sound and Vibration, 333(18):4214–4231, 2014.

[13] H. Schaub and J. L. Junkins. Analytical Mechanics of
Space Systems. AIAA Education Series, Reston, VA, 3rd
edition, 2014.

[14] H. Schaub and V. J. Lappas. Redundant reaction
wheel torque distribution yielding instantaneous l2 power-
optimal attitude control. AIAA Journal of Guidance, Con-
trol, and Dynamics, 32(4):1269–1276, July–Aug. 2009.

[15] R. Blenden and H. Schaub. Regenerative power-optimal
reaction wheel attitude control. AIAA Journal of Guid-
ance, Control, and Dynamics, 35(4):1208–1217, July–
Aug. 2012.

IAC-16-C1.1.4 Page 7 of 7


	Introduction
	Basilisk Overview
	Basilisk Actuator Simulation
	Simulating Reaction Wheels
	Simulating Thrusters

	Basilisk Actuator Control Evaluation
	Thruster Pulsing Algorithms
	RW Torque Mapping and Signal Conditioning

	Simulation Example
	Visualization

	Conclusions

