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Regional networks comprised of small landers that fly passively through the atmosphere
to a hard impact on the Martian surface represent a mission class of significant interest. As
an example mission of this kind, a seismic network of six probes delivered to Cerberus Fossae
is defined and relevant assumptions made, such as that the geometry and scale of the network
outweigh precision landing. A linear relationship is demonstrated between jettison speed or
timing and landing coordinates of the probe, and the limitations of this linear regime are
quantified. A linearized targeting method is developed and employed to design a sequence of
jettison events to target the desired network. Under the assumption that separation events
occur mechanically via a common system, all jettison speeds are constrained to be equal. A
Monte Carlo analysis is performed to quantify the impact of relevant uncertainties on the
probe landing locations and resulting network geometries. These results demonstrate that,
despite dispersions on jettison speeds and the resulting large variations for any given probe,
the properties of the network itself remain well within the mission requirements.

I. Introduction

Regional networks of small rough landers on the Martian surface are a mission class of interest to the planetary
science community [1]. These missions can uniquely enable a variety of scientific investigations by taking

simultaneous observations at different locations on the surface. Atmospheric science and seismology are of particular
interest, and meteorological suites and microseismometers that require less than 5 kg of total payload have been
developed for Mars [2, 3]. A number of network missions have been proposed or developed for Mars [4–10], but none
have yet been completed successfully.

Network missions emphasize coordination over the capability or mobility of a single system, and thus benefit from
minimizing the mass and volume of each probe in order to maximum their number while keeping total launch mass down.
One path to lowering mass is reducing requirements such as landing accuracy and g-load that drive design of the entry,
descent, and landing (EDL) system [11]. A multiprobe network mission may accommodate relaxed landing accuracy
requirements because approximate distribution on the surface and accurate positioning post-landing are likely more
important than precise delivery to pre-determined sites. The probes could be delivered by a single carrier spacecraft to
follow uncontrolled entry trajectories, eliminating the need for attitude control or propulsion subsystems on the probes.
If the carrier spacecraft then entered orbit it could serve as a telecommunications relay to Earth, provide positioning data
on the landing locations, and potentially obtain complementary science measurements. Design of science instruments
tolerant to relatively high landing decelerations would further reduce constraints on the EDL system.

A mission design tradeoff exists between the design of probe jettison and navigation error. If probe jettison occurs
too late, the required separation velocity becomes relatively large in order to achieve the desired distribution on the
surface, and there may be insufficient time to measure and correct any error introduced to the orbiter trajectory. An early
separation would reduce the required jettison velocity and leave time for potential reorientation and navigation updates
for the orbiter, but the relatively long coast phase amplifies the effect of any off-nominal separation velocity on the
probes’ trajectories and requires longer battery life prior to landing.

To gain insight into these tradeoffs, this paper defines an example Mars multiprobe mission and investigates how
probes could be delivered to form regional networks of various geometries and scales on the surface. Trajectories
are simulated for jettisons in the along-track and cross-track directions with varying timing and separation speed, and
properties of the resulting networks are quantified. Based on these results a linearized targeting scheme is developed
and demonstrated, with a discussion of the limitations of this linearization. A nominal network of 6 probes is designed
to conduct regional seismology, and jettison events are designed using the linearized targeting method. Finally, the
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effects of relevant uncertainties on the landing locations and resulting network geometries are quantified through a
5000-trial Monte Carlo analysis.

II. Reference Mission Definition and Assumptions
As a motivating example, the reference science mission is a seismology network deployed to Cerberus Fossae,

a region of known seismicity on Mars [12, 13]. A regional network in such an area can obtain useful geophysical
measurements using significantly lower sensitivity seismometers than a global network would require by relying on
its proximity to seismic events, bringing the required payload mass down to the range of 2–3 kg per lander∗ [14].
Shock-tolerant seismology payloads have been developed that can survive 15,000 g’s at impact [15], and precise
positioning of landers is significantly less important than achieving a network geometry that permits observability.

For the purpose of this study, the following assumptions constrain the problem:
1) Each probe is a passive ballistic rough lander
2) At least 4 probes are delivered to the surface.
3) Any two nominal landing sites are between 10 and 200 kilometers apart, and the sites are separated along 2

directions (i.e. not placed along a line).
4) Precision landing is not required.
5) The probes approach Mars on a single carrier spacecraft.
6) The probes separate from the carrier mechanically and in balanced pairs.
7) Probe jettisons occur between 5 and 0.25 days before atmospheric entry.
8) Telecom relay support is provided, either by the carrier spacecraft capturing into orbit or by existing orbital

assets.
The parameters of the probes are based on the Small High Impact Energy Landing Device (SHIELD) concept, a

notional entry vehicle with ballistic coefficient of approximately V = 10 kg m−2 [16], where V = </(���), < is vehicle
mass, �� is drag coefficient, and � is reference area. The vehicle has a lift-to-drag ratio of !/� = 0, and could be
spin-stabilized during entry to null-out any unintended lift vector. This small probe is a rough lander designed to reduce
the cost and complexity of delivering 6 kg payloads to the Martian surface by forgoing parachutes and any terminal
descent system in favor of a low ballistic coefficient and crushable material, resulting in landing decelerations on the
order of 1,000 Earth g’s [16]. Notably, the deceleration expected at impact for the Mars Microprobes was an order
of magnitude greater than this at 30,000 g’s [17]. Jettisoning the probes in pairs with relative separation velocities
aligned across the center of mass of the carrier spacecraft minimizes the undesired Δ+ imparted to the carrier, and is a
convenient way to deploy a symmetrical network geometry.

Each separation event imparts an impulsive change in velocity to the probe, where the jettison velocity \ 9 is defined
as the velocity of the probe relative to the carrier the moment after separation, and jettison speed as the magnitude
+ 9 = |\ 9 |. Note that this is equivalent to impulsive Δ\, but \ 9 notation is used in this paper to avoid confusion with a
propulsive maneuver. Because the separation events are performed mechanically (e.g., a spring jettison), it is assumed
to be more desirable to match the jettison speeds between all maneuvers then it is to fully minimize their magnitudes, as
long as the required separation speed is reasonably low. The carrier spacecraft is assumed to be on an entry trajectory,
significantly reducing the required jettison speed for separation events.

Orbital telecom relay is assumed as a requirement for these small probes, which are unlikely to have direct-to-Earth
link capability. It would be beneficial if the carrier spacecraft could enter Mars orbit and serve this purpose, especially
because it would already be in the correct orbital plane to do so. For a propulsive orbit insertion, the carrier would
need to perform a divert maneuver after the final probe separation to move the periapsis safely out of the atmosphere.
This presents a tradeoff, because if the final probe separation occurs late then this maneuver for the carrier spacecraft
becomes large and the timeline for navigation updates is short; however, if the final probe separation occurs early, the
probes experience a long passive coast phase and any targeting error becomes exaggerated.

One alternative co-delivery option is for the carrier to achieve orbit insertion via aerocapture, and to design the
carrier and probes to target identical atmospheric entry conditions. Aerocapture is the technique of flying through a
planet’s atmosphere to reduce the spacecraft’s energy and capture into orbit, reducing the Δ+ requirement compared
to propulsive orbit insertion [18]. For this co-delivery method, the carrier and probes diverge in the atmosphere due
to differences in their aerodynamic properties and control. By avoiding the need to set up two separate approach
trajectories, this co-delivery technique reduces maneuver complexity during approach and eliminates a source of

∗This assumption on total payload mass for a seismometer of the required sensitivity is based on the short-period instrument aboard the InSight
lander and private communications with Mark Panning, Dec. 2021.
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navigation error, while still gaining the benefits of delivering the probes from a single carrier spacecraft on an entry
trajectory. Co-delivery of this kind is feasible at Mars for a range of entry conditions and vehicle types [19]. Modeling
the error introduced to the trajectory of the carrier spacecraft due to these mechanical probe separations, and the impact
of that error on a guided aerocapture trajectory, is a topic for future study.

Define the central entry state as the intersection of the approach trajectory with the atmospheric interface altitude of
125 km. As a reference point design for this study, assume entry latitude q0 = 7.5◦ North and longitude \0 = 151◦ East.
The planet-relative entry velocity +0 has magnitude 6.0 km s−1, entry flight-path angle W0 = −12◦, and entry heading
angle k0 = 80◦. Flight-path angle is the angle between the velocity vector and local horizontal, and heading angle (or
azimuth) is the angle between the horizontal projection of the velocity vector and a due-North vector in that same plane
(e.g. k = 90◦ is due-East).

Assume the carrier spacecraft has properties similar to those of the Mars Science Laboratory (MSL) aeroshell: a
70◦ sphere-cone with offset center of gravity, giving V = 130 kg m−2 and !/� = 0.25. In this scenario, the carrier could
use lift modulation to aerocapture into an orbit with apoapsis altitude of up to about 1000 km from the same approach
trajectory as the pre-separation probes [19]. Further analysis of this scenario, however, is beyond the scope of this study,
which is focused on the probes themselves.

The trajectories in this study are numerically propagated using explicit Runge-Kutta integration of order 4(5) for a
rotating ellipsoidal planet. Mars has gravitational parameter ` = 4.305 × 104 km3 s−2, equatorial radius ' = 3397.2 km,
oblateness spherical harmonic coefficient �2 = 0.001964, and a planetary rotation period of l? = 1.02595675 days [20].
The equations of motion for the planet-relative state are provided in the appendix.

III. Varying Separation Magnitude and Timing
To gain initial insight into the design of these separation events, four probes are simulated with varying jettison

speeds and separation times. The probes are back-propagated from the nominal entry state until the separation time, the
probe velocity is updated corresponding to jettison speed and direction, and then the probes are propagated until impact
with the Martian surface. The direction in which the jettison velocity is applied is also a key design choice; in this
section, separation is considered along two orthogonal vectors, along-track and cross-track. The radial, cross-track,
and along-track directions (r̂, ĥ, and )̂, respectively) are defined in Eqs. 1–3 as functions of the position and inertial
velocity vectors r and ¤r, where ¤r = \ + 8? × r and 8? = [0, 0, l?]) . A pair of probes separates in the positive and
negative directions along the along-track vector, and the same for the cross-track vector. The jettison speed varies from
5 to 40 cm s−1 at a nominal separation time of E-1 day, and the separation time varies from 0.25–3 days at a nominal
+ 9 of 10 cm s−1. The resulting landing locations are shown to-scale in Figs. 1 and 2†, and for each permutation the
minimum and maximum great-circle distances between any two landing locations are shown in Table 1.

r̂ =
r

|r |

ĥ =
r × ¤r
|r × ¤r |

)̂ = ĥ × r̂

(1)

(2)

(3)

Several useful relationships are reflected in these results. First, the along-track jettisons resulted in far greater
separation distances than the cross-track jettisons.‡ As a result of the 80◦ entry azimuth, the along-track jettisons
correspond primarily to longitudinal separation, and cross-track jettisons primarily to latitudinal separation. Figures 1
and 2 emphasize this difference in scale. As shown in Table 1, distances between landing sites ranging from roughly
2.5 to 880 km are achieved from these separation events. Thus, jettison speeds on the order of 10 cm s−1 should be
sufficient to deploy a network from this approach trajectory within the assumed constraints.

Furthermore, inspection of these results reveals a clear linear relationship between jettison speed and the resulting
changes in landing location, and a similar linear relationship exists for separation time. This is an expected result despite
the significant nonlinearity of the problem dynamics. The separation velocities are small enough that they can be treated
as perturbations to the nominal trajectory, and these results imply that these perturbations are within the region about
this reference where a linear approximation is valid. This linear relationship has significant implications for targeting

†The surface image is a mosaic created from data acquired by Viking Orbiter Imaging Systems and generated using MarsTrek, trek.nasa.gov/mars
‡Note that for these hyperbolic orbit states the radial and velocity directions are nearly aligned, so the along-track direction is significantly offset

from the velocity direction; conceptualizing a direction in both the orbital plane and local horizontal plane, with the same sign as its projection onto
the velocity vector, may be more intuitive.
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Fig. 1 Landing locations for varying + 9 , separation at E-1 days, shown against to-scale Martian surface.
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Fig. 2 Landing locations for varying separation time, + 9 = 10 cm s−1, shown against to-scale Martian surface.
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Table 1 Landing site distances for four probes separated in± along-track and cross-track directions for varying
+ 9 and separation time

+ 9 , cm/s Separation Time, days Minimum Distance, km Maximum Distance, km
5 E-1 5.014 81.315
10 E-0.25 2.697 42.767
10 E-0.5 5.159 83.072
10 E-1 10.028 163.926
10 E-2 19.710 334.440
10 E-3 29.366 534.907
15 E-1 15.042 249.332
20 E-1 20.056 339.516
25 E-1 25.070 437.490
30 E-1 30.083 548.555
35 E-1 35.096 684.054
40 E-1 40.108 877.297

network deployment; for example, within this linear regime, the scale of any network can be doubled by simply doubling
the jettison speed or by doubling the time between separation and entry.

IV. Linearized Targeting Method
The linear relationships demonstrated by example in the previous section also enable application of a basic linearized

targeting method to this problem. Take x\ q = [\, q]) to be landing site coordinates and \ = \ (C) to be the velocity
of the probe at some time prior to landing. Apply a Taylor series expansion to x\ q about the trajectory of the carrier
spacecraft, x∗

\ q
, as a function of velocity, then neglect terms of second order or higher:

x\ q = x∗\ q +
mx\ q

m\

����
∗
(\ − \∗) + H.O.T.s (4)

Δx\ q ≈
mx\ q

m\

����
∗
\ 9 = [P]\ 9 (5)

[P] =
[
m\
m+G

m\
m+H

m\
m+I

mq

m+G

mq

m+H

mq

m+I

]
∗

(6)

where the jettison velocity is the velocity of the probe minus the velocity of the carrier spacecraft at the moment after
jettison, \ 9 = \ − \∗. The Jacobian matrix [P] can then be evaluated for any value of jettison time to represent the
sensitivity of landing site coordinates to velocity at that time. By inverting the Jacobian, the \ 9 vector required to
achieve a desired change in landing location, Δx\ q, can be linearly approximated. The Jacobian in this case is not
square, so the least-norm solution is selected to minimize + 9 magnitude.

\ 9 = [P]) ( [P] [P]) )−1Δx\ q (7)

For the purpose of this study, [P] is numerically approximated using first-order forward finite differencing; Eq. 8 gives
an example for the first element of the matrix,

m\

m+G
=
\? − \∗

Δ+G
, (8)

where Δ+G is a small velocity perturbation in the x-axis direction and \? is the landing site longitude that results from
applying a jettison velocity of [Δ+G , 0, 0]) then propagating to surface impact. In this study, a perturbation value of
Δ+G = Δ+H = Δ+I = 1 × 10−4 m s−1 was selected.
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Fig. 3 Linearized targeting demonstration, including both due-East and due-North carrier trajectories, for
E-1 day separation time.

Numerically computing the Jacobian [P] according to Eqs. 6 and 8 allows one to linearly approximate the jettison
velocity vector \ 9 required to achieve a shift in longitude and latitude equal to Δx\ q = [Δ\,Δq]) for a given separation
time. To consider a different jettison time, the Jacobian is simply re-evaluated applying perturbations at that time.

This functionality is demonstrated in Fig. 3, where all targeting is for a jettison time of 1 day prior to entry. Two
cases are shown, one with a due-East entry heading angle and the other with a due-North entry heading angle. Sixteen
target landing locations are defined along a circle with radius 0.5◦. The Jacobian is computed once for each case and
then, for each target landing location, the jettison velocity is computed per Eq. 7 and applied to the state of the probe at
the separation time, then the probe is propagated to the surface to compute the actual landing site. The achieved landing
sites are compared with their targets in terms of degrees of offset from the central (unperturbed) landing site in Fig.
3a. Figure 3b shows the required jettison speed vs. the angle between the offset direction and the downrange velocity
direction; that is, 0◦ is an offset in the downrange direction, 90◦ an offset in the crossrange direction, 180◦ in negative
downrange, and 270◦ in negative crossrange.

The results in Fig. 3 demonstrate that linearized targeting works reasonably well for offsets within 0.5◦ of the
central landing site. The jettison speeds required to shift the landing site along the crossrange direction are significantly
greater than those required to shift along the downrange direction, as predicted by the results shown in Figs. 1 and 2.
Crossrange offsets also incur greater targeting error for the same offset distance compared to downrange offsets, as is
clear from the results in Fig. 3a; the due-East case has worse error for latitudinal offset, and the due-North case has
worse error for longitudinal offset. Furthermore, this error is positive along the downrange direction for all landing
targets considered here. The maximum error among all 32 targeting examples is 2.3 km. Finally, the \ 9 computed
for downrange offset is mostly in the along-track direction and the \ 9 for crossrange offset is mostly in the cross-track
direction, validating the assumption made for the results in Figs. 1 and 2 for this E-1 day separation event example.

Having demonstrated the effectiveness of this method, it is important to explore the bounds of the region in which
linearization is a reasonable approximation for targeting. Figure 4 provides this result by computing the targeting error
in terms of both coordinate angle and distance along the surface. The carrier trajectory in this case again uses the
nominal 80◦ entry heading angle, and downrange and crossrange offset targets are again considered. The required
jettison velocity for each targeting case is also computed and their magnitudes plotted; these magnitudes increase exactly
linearly and the jettison directions are constant as a result of the linear targeting method.

Based on the results shown in Fig. 4, the upper limit of offset angles for which linearized targeting performs
reasonably well is somewhere between 1◦ and 3◦, depending on the application and level of acceptable error. Within 1◦
desired offset, error for the downrange targeting remains below 5 km and below 10 km for crossrange targeting; within
3◦ desired offset, the downrange and crossrange errors remain below 50 km and 100 km, respectively. After 4◦ or 5◦
of desired offset, both errors are increasingly rapidly, and by 6.5◦ to 7◦ of desired offset the probes begin missing the
planet entirely when propagated using the jettison velocity computed by linearized targeting. Note that these results are
all for a separation time of E-1 day.
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Fig. 4 Error and required + 9 for linearized targeting for varying downrange and crossrange spacing. After
the desired change in angle exceeds 6.5◦, both cases begin to miss the planet entirely.

V. Example Network Design
In this section an example network is designed that meets the stated assumptions and requirements, then a series of

jettison events are computed using the results summarized in the preceding sections. This network includes three pairs
of probes for a total of six landers in a symmetrical configuration on the surface. The timing of each jettison event is
tuned in order to apply the same jettison speed for each pair of probes.

Because downrange separation is so much easier to achieve than crossrange, the two furthest probes are placed
directly along the downrange track, offset from the center point by 1◦; these points are labeled "A" and "-A." To avoid
deploying the probes in a single line, the other two pairs must be away from the downrange track, yet still keep the
crossrange offset small. To this end, a parallelogram shape is formed such that "B" and "-B" are each offset in a direction
45◦ from the downrange vector, and sites "C" and "-C" are each offset in a direction 30◦ from the downrange vector.
The full nominal network is shown against a to-scale image of the Martian surface in Fig. 5 along with the central
point (which is not actually targeted) and an arrow indicating the downrange direction projected onto the surface§. The
network is located within the Cerberus Fossae region, and two semi-parallel fissures are visible in the surface image.

In order to target this network using a single jettison speed for all three separations, targeting is performed along a
range of separation times to provide trends of required + 9 ; these results are shown in Fig. 6. As would be expected,
required jettison speed increases dramatically as time between separation and entry approaches zero. A jettison speed
of 10 cm s−1 is selected as a relatively low value that intersects all three curves between 0.5 and 5 days before entry;
note that iterating between these results and the design of the network allows for flexibility in selection of the nominal
jettison speed. A root solver is implemented to compute the precise jettison time for each probe that targets the desired
landing location and results in a jettison speed equal to the desired value, with the approximate intersections of the
curves with the dashed line in Fig. 6 providing good initial guesses for the solver. Finally, each probe trajectory is
simulated, applying the nominal jettison event, and the distance between the desired and actual landing site is reported
as the nominal error for each probe.

Table 2 summarizes the nominal results for this example network. The downrange and crossrange values are
distances along the surface from the central point to the nominal landing location; the values for other probe in each pair
are the same magnitudes and opposite signs. The computed jettison velocity direction is shown by components in the
radial, along-track, and cross-track directions as dot products with the corresponding unit vectors, and the jettison time

§The surface image is a mosaic created from data acquired from the Context Camera aboard NASA’s Mars Reconnaissance Orbiter and generated
using MarsTrek, trek.nasa.gov/mars
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Table 2 Properties of nominal network, jettison velocity and timing, and nominal targeting error

pair downrange, km crossrange, km \̂ 9 · r̂, m s−1 \̂ 9 · )̂ , m s−1 \̂ 9 · ĥ, m s−1 C 9 , days nominal errors, km
A 59.292 0 0.00826 0.893 0.450 0.821 3.095, 3.804
B 14.823 14.823 0.0152 0.392 0.920 3.136 0.804, 0.841
C 14.823 -8.558 -0.0153 0.108 -0.994 1.651 0.370, 0.399
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C 9 for each pair of probes is given in days. Again, note that the other probes in each pair have the same jettison times and
jettison velocities in the opposite directions. Finally, the nominal targeting errors are given for both probes in each pair,
e.g. the errors for probes A and -A are 3.095 km and 3.804 km, respectively.

Probes A and -A have significantly more separation from the central point than the other two pairs. This is partly
in order to spread out the computed jettison times without placing any jettison overly close to the time of entry; for
a smaller downrange separation and the same jettison speed, the jettison time would occur even later (i.e. with an
even smaller C 9 ). The jettison velocity for pair A is oriented mostly in the along-track direction, whereas pairs B and
C jettison primarily in the cross-track directions; none of the three jettison velocities have large radial components.
Even though pairs B and C both have at least as much downrange offset as crossrange, the jettison speed required to
achieve crossrange is much higher, so it dominates the direction of jettison. Lastly, in this case the downrange pair, A,
has significantly greater targeting error than the other probes. Although in general crossrange placements accumulate
targeting error more quickly, the significantly greater total distance from the central point to pair A results in more
linearization error. Since precision landing is not a requirement for these passive entry probes, nominal landing error
within 5 km is likely acceptable.

VI. Monte Carlo Analysis
Having designed an example network and the jettison events required to deploy it, the impact of relevant uncertainties

on the landing locations of all six probes is quantified next. Variability of atmospheric density is modeled by using
random profiles of density vs. altitude that are generated using the 2010 version of the Mars Global Reference
Atmospheric Model (Mars-GRAM 2010) [21]. Uncertainty in the approach trajectory of the carrier spacecraft is
modeled by dispersing the state at atmospheric entry for each trial, then back-propagating the dispersed state to the time
of first jettison. The entry flight-path angle W0 and entry velocity magnitude +0 are dispersed independently according to
Gaussian distributions centered at the nominal value and with some standard deviation f. For this study, the 3f value
for W0 is set equal to the requirement on delivery error for MSL, and the 3f value for +0 is set equal to the required
knowledge accuracy at EDL guidance system initialization for MSL [22]. For a given trial, these three dispersions are
applied once, such that all six probes experience the same atmosphere and carrier spacecraft trajectory.

The ballistic coefficient of each probe is dispersed along a uniform distribution with bounds at ±5% of the nominal
value; the lift-to-drag ratio always remains at its nominal value of zero, assuming that axisymmetric spin removes the
effect of any small, unintended lift force. Finally, the magnitude of the jettison event is dispersed along a uniform
distribution with bounds at ±10% of the nominal value; the direction of the jettison velocities are assumed to be nominal
for the purpose of this study. These two dispersions are applied independently and randomly to each probe for each trial.
Note that the dispersion on jettison velocities means pairs of probes will not be perfectly balanced during separation,
and this would impart some undesired momentum to the carrier spacecraft and perturb its trajectory, with the velocity
change of the carrier depending on its mass relative to the probes. These perturbations would result in additional error
for any subsequent probe separations. Incorporating the effects of off-nominal jettison speeds on the carrier spacecraft
is a topic for future study. These input dispersions are summarized in Table 3.

The goal is to deploy a network in approximately the correct geometry and location, rather than to precisely target
each probe. Thus, the separate statistics of landing error for each probe do not directly relate to the performance
requirements. To better characterize network delivery performance, define two error parameters, center error Y2 and
shape error YB. Center error describes off-nominal location of the center of the network, and shape error describes

Table 3 Monte Carlo analysis input dispersions

Parameter Dispersion
atmospheric density d MarsGRAM
entry velocity magnitude +0 3f = 2m/s
entry flight-path angle W0 3f = 0.2◦

probe ballistic coefficient V ±5%
jettison speed + 9 ±10%
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off-nominal distribution of probes around that center. Define center error for any given trial as follows:

Y2 =

√
(\̄∗ − \̄)2 + (q̄∗ − q̄)2 (9)

where \̄∗ and q̄∗ are the average longitude and latitude, respectively, across all probe locations for the nominal network
design, and \̄ and q̄ are the average longitude and latitude of the actual probe landing sites. This error is computed in
radians and can be converted to distance by multiplying by the planet’s radius. To compute the shape error, compute the
great circle distance between every unique pair of landing sites, yielding 3 = # (# − 1)/2 distances for # probes, and
label these values X∗

8
and X8 for the nominal and actual landing sites, respectively. The shape error is then defined as the

root sum squared of the differences between the nominal distance and actual distance for each unique pair of landing
sites, divided by the total number of probes #:

YB =

√
(X∗1 − X1)2 + . . . + (X∗3 − X3)2

#
, 3 =

# (# − 1)
2

(10)

A more intuitive representation of these parameters is provided by Fig. 7, which shows a basic nominal network in
blue circles. The orange squares have the correct network shape but all points are shifted to the right, resulting in Y2 = 2
and YB = 0. The green triangles are centered correctly but the entire geometry has been reduced in size, resulting in
Y2 = 0 and YB = 2.

The results of the 5000-trial Monte Carlo analysis are summarized in Fig. 8 and Table 4. The landing site for each
probe and the central point of those sites are shown in Fig. 8 for every trial. The nominal landing sites and central point
are shown in the figure, along with the landing site locations for the trial that resulted in the worst shape error, about 6
km. Statistics of the center and shape errors are given in Table 4. Additionally, for every trial the great circle distance is
computed between every unique pair of landing sites and then the minimum, maximum, and average of these distances
is recorded; the statistics of these values are also shown in the table.

The large spread of landing locations shown in Fig. 8, especially in both directions along the downrange vector, is
an expected result for passive entry vehicles subject to a number of dispersions. Considering that the nominal network
includes probes separated by less than 20 km, the landing site dispersions of ±10 − 25 km downrange would seem
to preclude successful deployment of this network. However, as captured by statistics of the center and shape error
parameters, these dispersions are mostly applied to the network as a whole, shifting the entire network with only minor
distortions to its shape. Indeed, the worst-case scenario for shape error shown in Fig. 8 is still clearly recognizable as
the desired network shape. As reported in Table 4, the closest that two probes ever land in any single trial is 20 km, and
the farthest in any trial is about 137 km; this performance is well within the assumed requirement of placing probes
between 10 and 200 km apart on the surface.

These favorable results occur because most of the landing site variation is due to dispersions in entry flight-path
angle and atmospheric density, and these affect all of the probes more or less equally. While a ±10% variation in
jettison speed is significant and is applied independently to each probe, the actual jettison speeds are relatively small at a
nominal value of 10 cm s−1. A ±1 cm s−1 change in velocity applied within 5 days of entry is small enough that it has
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Fig. 8 Nominal and random trial landing locations shown against to-scale Martian surface.

Table 4 Statistics of relative landing site separation distances

Parameter Mean Min. Max. 3f
center error Y2 , km 5.309 0.012 26.344 12.102
shape error YB , km 2.285 0.366 6.055 2.859
min. separation, km 21.741 20.000 24.113 2.363
max. separation, km 118.808 103.312 137.478 17.011
avg. separation, km 52.168 46.583 59.441 5.924

a relatively minor impact on the resulting network geometry for this scenario. Furthermore, by keeping the probes
relatively close together but putting the probes that are offset in only downrange the furthest away, the design of this
nominal network makes it more robust to changes in probe locations without violating the requirements on network
placement. The center of the network does vary significantly, but a starting assumption is that this is allowable, as may
well be the case for something like a regional seismic network in Cerberus Fossae, a fairly large region.

VII. Conclusion
The results in this paper provide insight into the design of a regional network of rough landers for Mars. The

demonstration of linearity enables a mission designer to use simple intuition such as doubling the jettison velocities to
double the size of the network, and the bounds of the region where this linear relationship is valid were quantified. The
linearized targeting method is readily applied to any number of probes and desired network geometry, and could be
incorporated with root-solvers or other optimization tools to rapidly explore the trade space. The Monte Carlo analysis
demonstrates that large dispersions in probe landing locations do not necessarily translate into large errors on the shape
or scale of the resulting network, an insight aided by the definition of separate center and shape error parameters.
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Appendix
Take the position coordinates to be radial distance A , longitude \, and geocentric latitude q. Take the planet-relative

velocity coordinates to be velocity magnitude + , flight-path angle W, and heading angle k. The equations of motion for
a vehicle in atmospheric flight around an ellipsoidal rotating planet are given below:

¤A = + sin W (11a)

¤\ = + cos W sink
A cos q

(11b)

¤q = + cos W cosk
A

(11c)

¤+ = −� − 6A sin W − 6q cos W cosk

+ l2
?A cos q (cos q sin W − sin q cos W cosk) (12a)

¤W = 1
+

[
! cosf + cos W

(
+2

A
− 6A

)
+ 6q sin W cosk + 2l?+ cos q sink

+ l2
?A cos q (cos q cos W + sin q sin W cosk)

]
(12b)

¤k = 1
+

[
! sinf
cos W

+ +
2

A
tan q cos W sink + 6q

sink
cos W

− 2l?+ (cos q tan W cosk − sin q) +
l2
?A

cos W
cos q sin q sink

]
(12c)

where

! =
d+2

2V
!/� (13a)

� =
d+2

2V
(13b)

6A =
`

A2

[
1 + 3�2'

2

2A2

(
1 − 3 sin2 q

)]
(13c)

6q =
`

A2

[
3�2'

2

2A2 2 sin q cos q
]

(13d)
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