
Finite-Dimensional Density Representation for Aerocapture
Uncertainty Quantification

Samuel W. Albert∗, Alireza Doostan†, and Hanspeter Schaub‡

University of Colorado Boulder, Boulder, CO, 80303

Aerocapture is a problemof high interest for future interplanetarymissions. It is dominated
by a high sensitivity to a number of uncertainties, especially atmospheric density variability.
The common state of practice for uncertainty quantification in this context is the Monte
Carlo simulation methodology. A number of methods exist which may be superior to Monte
Carlo methods but require a lower finite-dimensional representation of the random inputs.
A Karhunen–Loève expansion approximation of perturbed atmospheric density is presented,
which by reducing the dimensionality of the atmosphere model could enable the application
of more advanced techniques such as polynomial chaos expansion. This representation is
then demonstrated by implementation in a Monte Carlo simulation of entry dynamics for
aerocapture. Early results of applying compressed sensing polynomial chaos expansion to
this problem are also presented, and compared with the Monte Carlo baseline. Compressed
sensing-based polynomial chaos expansion is shown to converge faster than Monte Carlo for
this problem, and filtering out trajectories that impact the surface is shown to further improve
convergence, but further validation is needed.

I. Introduction

Planetary entry is a unique domain characterized by nonlinear dynamics and high sensitivity to error and uncertainty.
The most important source of this uncertainty is the inherent variability and limited knowledge of the atmosphere. As

a vehicle transitions from deep-space flight to hypersonic atmospheric flight, the uncertainties inherent in both regimes
conspire to make accurate prediction and navigation impossible without appropriate quantification and propagation of
those uncertainties. Aerocapture is a subset of planetary entry problems and serves as the example problem of this
paper. By harnessing aerodynamic forces from the atmosphere, a spacecraft performing aerocapture decreases its energy
enough to capture into orbit without a large propulsive orbit insertion burn. As shown in Figure 1, the vehicle goes from
an incoming hyperbolic orbit, passes through the upper atmosphere reducing energy by the desired amount, then exits
the atmosphere and coasts to apoapsis where it performs a periapsis raise maneuver to prevent re-entry. The vehicle
then performs apoapsis and out-of-plane correction maneuvers as necessary.

The most relevant uncertainties to aerocapture are grouped into three general categories: the vehicle (drag/lift
coefficients, mass, center of gravity location, etc.), the navigation state (entry flight path angle, entry velocity, etc.),
and the atmosphere (density, winds, etc. along the trajectory). Every category must be accounted for and each has
its own challenges, but the atmosphere poses some unique difficulties. The vehicle and navigation state uncertainties
are mostly represented by random variables, i.e. the mass of the vehicle is a single random scalar and the position
vector a random vector. The atmosphere profiles, however, are represented by random fields, i.e. they map a random
outcome to a continuous function in space. The key difference is that because a random field is defined by a set of
=th-order probability density functions (pdfs) for all positive integers =, the representation is not finite-dimensional.
For this reason, the approach to atmosphere modeling is especially relevant to consider here before further discussing
uncertainty quantification (UQ).

Many planetary entry studies model the atmospheric density and its perturbations in one of two ways: using an
exponential model [1–3] or relying on an existing empirical atmosphere model [4–6], such as a Global Reference
Atmospheric Model (GRAM) from NASA or the Mass Spectrometer and Incoherent Scatter radar (MSIS) model from
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Fig. 1 Diagram of the basic aerocapture process

the US Naval Research Laboratory. While sufficient in a number of cases, both of these approaches have their limitations.
The exponential model is useful because it provides a reasonably accurate approximation of how density varies with
altitude while reducing the density profile to a function of two scalar parameters, surface level density and atmospheric
scale height [7]. A common approach to creating dispersed density profiles is to model these two parameters as random
(usually Gaussian) variables, selecting a new pair of values for each simulation. However, this approach is primarily
useful as a simplified approximation enabling analytical approaches. As shown in Figure 2 even a comparison of only
nominal scenarios reveals significant disagreement between the exponential profile and a model such as Earth-GRAM.
Furthermore, dispersing only the surface density and scale height will always retain the same exponential shape of the
density profile and simply scales the result in either direction. These two limitations highlight why a more realistic
modeling approach is necessary for many scenarios.

The other common approach is using one of several existing models which can return density and other parameters
of interest (pressure, temperature, etc.) based on user inputs, GRAM and MSIS being two common choices. While
these models are still limited, in general they are more realistic and more flexible than a simple exponential model. The
GRAM tools, for example, can take solar activity parameters as inputs in addition to location, date, time, and others.
Importantly, they also have a built-in capability to randomly generate profiles with physically realistic perturbations. In
the context of uncertainty quantification, the major limitation of GRAM and models like it is that they are often treated
as a black box analysis component. That is, the analyst generates a large number of random perturbed profiles and
then randomly selects a profile to use for each simulation in a Monte Carlo simulation setting. By relying on random
sampling techniques like Monte Carlo and simply selecting full pre-generated profiles, the analyst has implicitly forgone
the implementation of other UQ techniques which, in some cases, may have outperformed Monte Carlo.

The issue is that many UQ techniques, such as stochastic collocation [8, 9] and polynomial chaos expansion (PCE)
[10, 11], require low stochastic dimensionality (i.e., a relatively small number of dispersed input parameters). Any
computer model of a continuous atmosphere will discretize the output profile and this may be considered a random
vector with a dimensionality equal to the number of discretization steps, e.g. an altitude profile with data every 500
meters from 0 to 125 km would have a dimensionality of 251 in this sense. Thus, in general a model with reasonable
resolution quickly exceeds the low stochastic dimensionality requirement when simply relying on discretization for
finite-dimensionality, precluding the use of PCE or similar techniques. Therefore, the high dimensionality of this black
box modeling approach effectively limits the analyst to a Monte Carlo approach to uncertainty quantification even for
cases where a different UQ approach might otherwise be more appropriate.

The goal of this paper is to implement a lower-dimensional yet realistic representation of perturbed density profiles by
representing density using a Karhunen–Loève expansion. This enables the implementation of other UQ techniques like
PCE without sacrificing the realism of the atmosphere model. This density model is applied in a baseline Monte Carlo
simulation of an entry dynamics problem, dispersing inputs around a nominal aerocapture scenario. Finally, preliminary
results of applying compressed sensing polynomial chaos expansion to this aerocapture problem are presented.
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Fig. 2 Relative error between nominal density profiles from the exponential model and Earth-GRAM2016

II. Modeling Atmospheric Density

A. Mars-GRAM
For this paper, Mars-GRAM2010 is used as an atmosphere model to generate a dataset of density profiles. Mars-

GRAM has the attractive feature of an internal capability to disperse profiles, and has the additional benefit that GRAMs
also exist for Earth, Titan, Venus, and Neptune. In generating profiles a columnar atmosphere is assumed and thus
latitude and longitude are not incremented in the profiles, only altitude - but note that this assumption is for the sake
of simplicity, it is not a requirement for the approach presented here. The data used for this paper are generated for
an arbitrary date and location of February 18th 2021 at 18.38◦N, 77.58◦W, at altitudes from the surface to 130 km in
steps of 100 m. The optical depth of background dust setting is 0.3, with dust diameter of 5 µm and particle density of
3000 kg m−3. The 10.7 cm solar flux is set to 68 sfu, and the random density perturbation scale is set to 1. The working
assumption for this study is that while changes in these model settings may affect the character of the density profile,
they would not significantly impact the applicability of the Karhunen–Loève expansion representation of density, with
the possible exception of the random density perturbation scale. 50,000 density profiles are randomly generated with
the above settings using Mars-GRAM2010’s built-in Monte Carlo capability.

The normality of the data is assessed using quantile-quantile (q-q) plots and by comparing empirical histograms to
Gaussian pdfs with the sample mean and variance of the data as shown for two representative altitudes in Figs. 3 and 4.
These results show that the density dispersions are fairly Gaussian in nature, although there is some notable skewness
that develops for higher altitudes. For this purpose of this paper, the density perturbations in Mars-GRAM2010 are
treated as a Gaussian random field, an imperfect but reasonable assumption based on results like those shown in Figs.
3 and 4. Note that this assumption is not a requirement for the approach taken in this study, but does simplify the
process significantly. Future work will consider potential improvements to this density modeling step, such as fitting
a log-normal distribution to the data instead. Finally, note that there is a theoretical error in describing density as
Gaussian: since the support of any Gaussian random variable is (−∞,∞), the variable has a nonzero probability of
being negative, yet the physical parameter density has a lower-bound of zero. Revising the structure of the density
approximation outlined below to implement a truncated Gaussian is another step for future work, but note that no
negative density values have actually been generated in this work because they have very low probabilities of occurring.

B. Karhunen–Loève Expansion for Density
A Karhunen–Loève Expansion (KLE) represents a random field through an infinite linear combination of orthogonal

basis functions (a Fourier expansion), in such a way that the choice of the basis functions minimizes the mean-square
error [12]. This definition is shown by Eq. 1 where / is the random field, ℎ is the independent variable (not necessarily
scalar), 〈〉 is the expected value function, and _8 and q8 (ℎ) are the eigenvalues and eigenfunctions of the covariance
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Fig. 3 Centered density at 52 km, showing nicely Gaussian behavior at low/mid altitudes
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Fig. 4 Centered density at 104 km, showing some positive skewness at higher altitudes
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function of the random field �// (ℎ1, ℎ2), respectively, as shown in Eq. 2. Finally, each .8 is a random variable
described by Eq. 3.
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Fig. 5 Exponential decay of the eigenvalues for the density KLE. Cutoff at U = 0.95 results in 3 = 14; cutoff
at U = 0.99 results in 3 = 64.

/ (ℎ) = 〈/ (ℎ)〉 +
∞∑
8=1

√
_8q8 (ℎ).8 (1)

∫ )

0
�// (ℎ1, ℎ2)q8 (ℎ2)dℎ2 = _8q8 (ℎ1) (2)

.8 =
1
√
_8

∫ )

0
/ (ℎ)q8 (ℎ)dℎ (3)

In practice, the eigenvalues and eigenfunctions are sorted by descending magnitude of the eigenvalues and then the
sum in Eq. 1 is truncated after some 3 number of sufficient terms. Determining the required 3 is problem-dependent,
but in general 3 is chosen such that the mean-square norm of the approximation is within some relative error of the
exact mean-square norm. In this study the heuristic method described in Eq. 4 is applied, where : is some sufficiently
large number and U is close to 1 based on the desired level of permissible error (for a relative mean-square norms error
of (1 − U) × 100%).

3 = min

{
9 :

∑ 9

8=1 _8∑ 9+:
8=1 _8

≥ U
}

(4)

Using this Mars-GRAM dataset, a value of U = 0.95 results in 3 = 14 dimensions, while a value of U = 0.99 results in
3 = 64 dimensions. Results are generated for both of these U values, referenced as the lower- and higher-dimension
cases, respectively. The sorted eigenvalues and the truncation points for the lower- and higher-dimension cases are
shown in Fig. 5.

Because the density profiles are reasonably well-modeled by a Gaussian random field, the expression for finding .8
can be simplified. In fact, when / (ℎ) is Gaussian the .8’s are all independent and identically distributed (i.i.d.) standard
normal random variables:

.1, .2, ... ∼ N(0, 1) i.i.d. (5)
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In order to estimate the eigenvalues and eigenfunctions of the discrete variant of this random field, its covariance matrix
must first be estimated. To that end, the sample covariance matrix is computed using the full dataset generated from
Mars-GRAM2010. The unbiased estimate of the sample covariance matrix W// is shown in Eq. 6, where `c is a
matrix such that each column is an observation vector which has had the sample mean (a vector of the mean sample
density at each altitude step) subtracted from it. The sample mean is used rather than treating the nominal output of
GRAM as a population mean in order to keep the approach based entirely on the provided perturbed data, and thus more
model-agnostic.

I// ≈ W// =
1

# − 1
`c`

)
c (6)

Having computed a covariance matrix, it is straightforward to find the eigenvalues and eigenvectors of that matrix
and sort them according to descending order of the eigenvalues, and the results are the _8 and q8 (ℎ) in Eq. 1, respectively.
Thus, all of the components to generate KLE realizations of the density profile are found from the GRAM data, repeated
below for a single random trial substituting density as a function of altitude d(ℎ) as the random field:

d(ℎ) ≈ 〈d(ℎ)〉 +
3 ∑
8=1

√
_8q8 (ℎ).8 .8 , ..., .3 ∼ N(0, 1) (7)

III. Uncertainty Quantification
This section presents the preliminary results of implementing the KLE representation of density variability in an

uncertainty quantification framework for the aerocapture problem. In general, a standard Monte Carlo random sampling
approach is very popular for this type of analysis [4, 6, 13, 14]. In addition to being simple to understand and implement,
the greatest merit of Monte Carlo is that it avoids the so-called curse of dimensionality — that is, exponential growth in
the number of samples required to achieve convergence as the (stochastic) dimensionality of the problem increases. The
mean-square error of Monte Carlo is given in Eq. 8, where f is the standard deviation of the QoI. The dimensionality of
the problem 3 does not appear in Eq. 8, and thus the mean-square convergence of a Monte Carlo estimate is formally
independent of the dimension of the problem [15]. Increasing the number of dispersed inputs does tend to increase the
QoI variance and thus the number of samples required, but even so this strong performance for very high-dimensional
problems sets Monte Carlo alone in terms of UQ techniques.

〈(D̄# − `)2〉1/2 =
1
√
#
f (8)

Though Eq. 8 captures the boon of Monte Carlo, it also reveals its bane: a convergence rate of O(1/
√
#) is

relatively slow. This slow convergence limits Monte Carlo because, inherently, this technique oversamples the mean and
undersamples the tails, making it an inefficient choice in the common scenario in which an analyst must understand
behavior in the tails to pass or fail some requirement.

While popular, Monte Carlo is far from the only technique available to quantify the effect of uncertainty on some
system model. Latin-hypercube sampling [16, 17], multi-level Monte Carlo [18, 19], sparse-grid stochastic collocation
[8, 9], and polynomial chaos expansion [10, 11] all offer alternatives, to name just a very few. It is difficult to built a
proper taxonomy of these methods, but a generalization is that these techniques offer faster convergence than Monte
Carlo in exchange for some assumptions about the problem. However, in general these methods are also vulnerable to
the curse of dimensionality, meaning their convergence rate suffers as the number of dimensions increases, to the point
that Monte Carlo may out-perform them.

Though the KLE representation successfully provides a finite-dimensional representation of density variability that
is still higher-fidelity than an exponential model, it results in 3 = 14 dimensions even with 5% mean-square error, or a
much higher 3 = 64 dimensions for 1% mean-square error. Moreover, 3 only accounts for the dimensions from the
KLE itself; an aerocapture scenario will require at least a few other dispersed inputs to be worthwhile, and may include
tens or hundreds of additional dispersed inputs depending on the application and level of fidelity. Thus, even for a simple
application with 3 = 14 and 38 = 4 other dispersed inputs, the 18-dimensional uncertainty effectively rules-out many
UQ techniques [20]. This is the motivation for selecting polynomial chaos expansion (PCE) via compressed sensing for
this problem; while it is not immune to the curse of dimensionality, compressed sensing-based PCE performs relatively
well at high dimensions compared to other non-Monte Carlo techniques, while still promising faster convergence than
Monte Carlo for a range of problems [21–23]. Fundamentally, the potential benefit of applying this method to the
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aerocapture problem is to gain useful estimates of the statistics of QoIs with significantly fewer samples than would be
required to form estimates of the same accuracy using standard Monte Carlo. The central question of this section could
then be summarized as follows: how many samples does it take for the PCE method to stabilize/converge, and at that
number of samples, how does the Monte Carlo estimate accuracy compare?

A. Entry Dynamics Simulation
To compare the performance of Monte Carlo and PCE for the aerocapture problem, all 130,000 simulations are

completed using a simple entry dynamics simulation tool developed for this task, Petunia∗. The simulation for this study
is 3 degrees of freedom, and assumes constant aerodynamic coefficients, constant mass and no thrust, and point-mass
gravity. In general gravity, drag, and lift forces all affect the trajectory of the vehicle, but for simplicity this study used
a passive ballistic vehicle with zero lift. Gravity is computed as Eq. 9 where < is the mass of the vehicle, ` is the
gravitational parameter of the Earth, r is the position vector of the spacecraft and L6 is the gravitational force vector.

L6 = −
<`

|r |3
r (9)

|L� | =
1
2
d+2
∞��� (10)

The magnitude of the drag force is defined in Eq. 10 where �� is the drag coefficient, � is the reference area, and
+∞ is the magnitude of the wind-relative velocity (not to be confused with the hyperbolic excess velocity). The drag
force is oriented directly opposite the direction of this wind-relative velocity. For this study winds are neglected, and the
atmosphere is assumed to rotate as if fixed to the planet. An ODE solver is then used to numerically integrate according
to Newton’s 2nd Law, < ¥r = ∑

L inertially. The simulation integrates until one of two exit conditions is met. If the
vehicle passes downward through some minimum altitude, set to 20 km for Mars, then the simulation terminates and
that trajectory is categorized as an impact. Note that these trajectories also have a negative final flight path angle (are
still traveling downwards), whereas the rest of the trajectories have a positive final flight path angle. If the vehicle
passes upwards through a maximum altitude, defined as 135 km for Mars, then the simulation terminates. If the orbit
mechanical energy at termination is less than zero, the trajectory was a successful aerocapture, and if the energy is
positive then the vehicle is still on a hyperbolic trajectory and will escape.

Using this simulation tool, a nominal aerocapture at Mars is designed and distributions defined for several dispersed
parameters. Each trajectory begins at the same location, with altitude equal to the atmospheric interface, defined to
be 125 km for Mars. The drag coefficient �� , mass <, entry flight path angle (EFPA), and initial velocity magnitude
E are all randomly selected according to their distributions for each run. For the purpose of this study each of these
parameters is modeled using a Gaussian distribution because this simplifies the PCE process. Some of these parameters,
specifically �� and <, would likely be better modeled as uniform distributions, and making this adjustment is planned
for near-term future work.

For the current study, �� has a mean of 1.59 and a variance equivalent to that of a uniform distribution with bounds
of ±10%. Likewise, < has a mean of 3000 kg and a variance equivalent to that of a uniform distribution with bounds
of ±5%. Again, note that neither of these values can physically be negative, yet they are modeled with Gaussian
distributions. A uniform distribution or truncated Gaussian would remedy this problem, but for the purpose of these
results note that negative values for drag coefficient or mass are never actually realized. EFPA and initial velocity
magnitude are more naturally modeled using Gaussian distributions; EFPA has mean -10.6◦and standard deviation
f = 0.2◦/3, while E has mean 6 km s−1 and standard deviation f = 10/3 m s−1. These four distributions are all selected
to be in the range of physically realistic values used in previous studies [24], but are then tuned such that most scenarios
successfully completed aerocapture, at least some scenarios escaped, and some impacted the surface. This is done to
reflect an early-stage study or parameter sweep where this high variance in results may occur, and ensures that the UQ
approach tested in this study would still apply in those scenarios. Finally, the area � of the vehicle is not itself dispersed,
but is instead computed by using a fixed ballistic coefficient of V = 129 kg m−2 then solving Eq. 11 to get the area given
the current mass and drag coefficient values. This results in a nominal area of 14.6 m2. Table 1 summarizes these
parameters. Two datasets are generated using the above simulation tool and input dispersions. A lower-dimensional
dataset of 70,000 trajectories is generated using U = 0.95, and a higher-dimensional dataset of 60,000 trajectories is
generated using U = 0.99.

∗github.com/salbert21/petunia

7

https://github.com/salbert21/petunia


V =
<

���
(11)

Table 1 Summary of simulation input parameters

Parameter Mean 3-f
�� 1.59 0.275
< 3000 kg 259.8 kg
EFPA -10.6◦ 0.2◦

E 6 km s−1 10 m s−1

d(ℎ) Mars-GRAM2010 via KLE Mars-GRAM2010 via KLE
V 129 kg m−2 ∼

B. Bifurcation in the Aerocapture Problem
There is one other feature of the aerocapture problem that should be addressed before discussing the PCE

implementation. When the variances of the dispersed parameters are sufficiently large, some trajectories may fail
to aerocapture by impacting the surface, while others may fail by escaping (still having positive orbital energy at
atmospheric exit). In general, the quantities of interest (QoIs) vary smoothly between aerocapture cases and escaped
cases. However, trajectories that intersect the surface are terminated at a low altitude after they have already slowed
down a great deal during a long atmospheric flight. The final states of these scenarios thus exist in a fundamentally
different regime than the scenarios that either aerocapture or escape. This is reflected in QoIs that capture the final state
of the vehicle, resulting in a bifurcation in the problem whenever the initial dispersions are large enough.

This bifurcation behavior is illustrated in Fig. 6. Figure 6a shows the discontinuity in final flight path angle
and final orbital energy for the 60,000-case higher-dimensional Monte Carlo dataset. Figure 6b is generated for a
nominal aerocapture scenario by incrementing the EFPA from −10.3° to −11.5° in steps of −0.025° while holding
all other parameters constant (including the density profile). The shallowest trajectories, shown in red, are escape
trajectories, which vary smoothly to become aerocapture trajectories, until in the green region the EFPA is steep enough
that the trajectories impact the surface from there until the steepest magenta trajectory. Fig. 6b illustrates how this
bifurcation unfolds over time; the impact cases follow a smooth transition at first, but continue decelerating deeper into
the atmosphere until reaching a much lower final energy/velocity by the time the vehicle reaches the minimum altitude.
The higher the inputs dispersions are, the more significant this bifurcating behavior will become, and it transitions from
a negligible probability to some notable outliers then eventually to a bi-modal output distribution as the input variability
is steadily increased.

The bifurcation is relevant because the PCE method implemented in this study requires that the QoI depend smoothly
on the dispersed inputs. Clearly, this discontinuity violates that assumption. Thus, if the input dispersions are large
enough that the chance of impact is non-negligible (as is true for the dispersions summarized in Table 1), then the
impact cases may disrupt the convergence of PCE by violating the smooth dependence assumption. The impact of this
phenomenon is examined later by generating results for filtered and unfiltered datasets, where the filtered datasets have
all impact trajectories removed before processing.

C. Polynomial Chaos Expansion
Polynomial chaos expansion works by representing the QoI D = D(y) of a system as a generalized Fourier series

expansion in a multi-dimensional polynomial basis orthonormal with respect to the joint probability distribution of the
inputs y, Py :

D̂(y) =
%∑
9=0
2 9k 9 (y)

m.s.−−−→ D(y), as %→∞ (12)

where in Eq. 12 D has finite variance and the approximation converges in the mean-square sense to the exact QoI value
as the number of terms % + 1 approaches infinity. The Fourier coefficients 2 9 are given by Eq. 13 where 〈〉 is the
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Fig. 6 Demonstrations of the bifurcation inherent in the aerocapture problem

expected value operator:

2 9 = 〈D(y)k 9 (y)〉 (13)

The orthonormal basis functions that form this approximation space are chosen based on the probability measure of
the random inputs, Py . For this application, after applying a KLE representation to atmospheric density variability
in Section II, the random inputs to this problem are 3 i.i.d. Gaussian random variables, where 3 = 3 + 38 is the
number of KLE terms for density plus the number of other scalar dispersed inputs. In this case, the basis functions are
orthonormal Hermite polynomials [11]. Letting k 9: (y: ) index these 1D polynomials in y: by their degree, 9: = 0, 1, . . .
for : = 1, . . . , 3, the 3-dimensional polynomials are defined by Eq. 14:

k 9 (y) =
3∏
:=1

k 9: (H: ) (14)

Then, the expansion is truncated to a basis of total order ?, by considering only those indices 9: for which
∑3
:=1 9: ≤ ?.

With this truncation method, the expansion will have % + 1 total terms as given by Eq. 15, noting that the number of
expansion terms then grows exponentially with the number of dimensions 3.

% + 1 =
(? + 3)!
?!3!

(15)

It is important to note that the quality of the approximation in Eq. 12 depends on the regularity of the QoI D(y) with
respect to the dispersed inputs y. For an infinitely smooth D(y) the convergence is exponential, but for non-smooth
behavior the convergence can become slow or fail to converge, and is susceptible to Gibbs phenomenon.

The preceding steps provide a method for approximating the QoI, but have not covered how to compute the
coefficients 2 9 beyond providing Eq. 13, which may be inefficient or infeasible to compute directly. Two fundamentally
different approaches exist for solving for these coefficients: intrusive and non-intrusive methods. Intrusive methods
such as Galerkin projection can be highly efficient [10], but by definition they require modifying the deterministic
simulation code for the system of interest. This would also require modification whenever fidelity is added to the model
or additional dispersed inputs are included. Thus, non-intrusive methods, which treat the deterministic solver as a
black-box, are desirable.

There are a variety of non-intrusive methods to solve for the unknown PCE coefficients [25]. The basic approach is
to generate some number of realizations of the QoI, then use these pilot trials to estimate the coefficients. For # samples
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of the QoI, Eq. 12 can be arranged in matrix form as shown in Eq. 16. Note that the dimensions of the measurement
matrix 	 are # × (% + 1). 

k0 (y1) · · · k% (y1)
...

. . .
...

k0 (y# ) · · · k% (y# )



20
...

2%

 ≈

D(y1)
...

D(y# )

 ⇒ 	I ≈ [ (16)

Solving the matrix equation in Eq. 16 via the standard least squares provides an estimate of the coefficients vector I
for an overdetermined problem, where the number of samples exceeds the number of coefficients (# > (%+1)). However,
because the number of coefficients grows rapidly with the dimensionality as shown in Eq. 15, for high-dimensional
problems this may require sufficiently many samples that the PCE convergence is no better than standard Monte Carlo,
especially if a high truncation order ? is required. This makes it desirable to apply methods to solve Eq. 16 for the
underdetermined problem. In this case, however, there are infinitely many solutions, and the minimum ℓ2-norm solution
becomes unstable under truncation error. This reveals a need for regularization of the problem.

Compressed sensing (also known as compressive sampling) provides one solution to this problem [21–23]. This
approach enforces sparsity of the coefficient vector by applying appropriate norms. Initially, the solution with minimum
ℓ0-norm is considered, where | |I | |0 = #{ 9 : 2 9 ≠ 0}:

Î = arg min
I
| |I | |0 s.t. 	I = [ (17)

However, a number of issues arise here. The optimization is non-convex, the solution is not always unique, and this
minimum is NP-hard to compute. A number of heuristic workarounds have been developed to address the complexity of
finding this sparsest approximation. The approach that is taken in this study is convex relaxation via ℓ1-minimization.
This solution seeks instead the minimum ℓ1-norm solution as defined in Eq. 18, where | |I | |1 =

∑%
9=0 |2 9 |:

Î = arg min
I
| |I | |1 s.t. 	I = [ (18)

Eq. 18 is now a convex optimization problem, and may be solved using standard linear programs. Under some conditions,
the minimum ℓ1-norm solution is unique and identical to the sparsest solution [26].

In practical implementation, there is truncation error, so quadratic programming can be employed to solve Eq. 19
for some tolerance X > 0. For this study, X is selected by defining X = f | |[ | |2, where[ is a vector of # samples of the
QoI u. f is tuned manually, as described further in Section III.D.

Î = arg min
I
| |I | |1 s.t. | |	I −[ | |2 ≤ X (19)

A number of tools exist for ℓ1-minimization. The tool used for this study is the basis pursuit denoise (BPDN)
problem solver provided by SPGL1: Spectral Projected Gradient for L1 minimization [27], a Python port of the original
MATLAB solver [28] and based on the theory outlined by van den Berg and Friedlander [29].

Once the PCE coefficients are known or estimated, the mean and variance of the QoI can be trivially computed as
shown in Eqs. 20 and 21. Though not part of this study, further stochastic properties of the QoI such as its cumulative
distribution function or probability density function can be estimated by inexpensively sampling Eq. 12 now that the
coefficients are known. Furthermore, sensitivity analysis is a natural byproduct of a PCE solution, and Sobol indices
can be easily determined from the coefficients [30, 31].

〈u〉 ≈ 〈û〉 = 20 (20)

f2 ≈
%∑
8=1

22
8 (21)

D. Results and Discussion
There are many parameters in the aerocapture problem that could be relevant quantities of interest, including peak

heat-rate, peak deceleration load, total integrated heat load, final apoapsis radius, final energy, etc. Furthermore, a
variety of statistics could be of interest for each of these QoIs, such as the 99% confidence interval for peak heat-rate
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(b) Variance estimation

Fig. 7 Final flight path angle results for U = 0.95, ? = 2

or the sensitivity of the final apoapsis radius to density variability. To simplify the scope for a more straightforward
comparison, in this study two QoIs are considered, the final flight path angle and final specific orbital energy. For each
of these two QoIs, the statistics of interest are simply the mean and variance.

The results of estimating these QoIs by applying compressed sensing PCE to the aerocapture problem are summarized
in Figs. 7 - 12. In each case, the sample mean or variance computed from the full 60,000- or 70,000-sample Monte
Carlo dataset is used as the truth value for comparison, because this large number of samples was shown to be more
than enough to achieve convergence. The y-axis of each plot then displays the absolute value of the percent error of
each estimate compared to this full Monte Carlo value. Note the log scale for the y-axis. While the actual number of
samples included at each point are labeled on the lower x-axis, the upper x-axis provides the sample size in terms of the
factor of the number of coefficients % + 1; i.e., when this value is 0.9 the problem is underdetermined, and at 1.1 it is
overdetermined and SPGL1 returns a least-squares estimate.

The unfiltered cases consider all samples and are compared against the full Monte Carlo dataset. The filtered cases
do not include any impact trajectories, and are compared against a filtered version of the full Monte Carlo dataset
that has also had the impact cases removed. When computing all PCE results, the first # samples (or the first #
non-impact samples, for filtered results) in the full dataset are used to generate the PCE estimate. Note that this leaves
the PCE results somewhat vulnerable to the particular makeup of this set of samples compared to the full dataset; this is
addressed further in Section IV. To capture the results for various tunings of the tolerance parameter f, PCE results are
computed for f = {0.01, 0.001, 0.0001} in each case. The two best-performing results are then selected for display.
The PCE results should be able to perform at least as well as the best-performing value of f when properly optimized,
as discussed further in Section IV.

The Monte Carlo lines represent the Monte Carlo estimate for just # samples, compared to the Monte Carlo estimate
using all 60,000 or 70,000 samples. These estimates are always unfiltered. Because Monte Carlo is in general more
sensitive to the makeup of the particular set of samples, for each plot 10 Monte Carlo lines are generated using #
randomly selected (uniform without replacement) samples from the total dataset. Two of these ten results are then
selected for display, one with the best convergence and another with average convergence. This approach is meant to
somewhat mitigate the effect of the random makeup of a single set of # samples where # is small.

Figs. 7 and 8 gives the results for a KLE with U = 0.95, which results in a total dimensionality of 3 = 18, for a
2nd-total-order truncation of the PCE expansion. Figs. 9 and 10 provide the same but for a 3rd-total-order truncation
of the PCE expansion. Finally, Figs. 11 and 12 show the results for a KLE with U = 0.99, which results in a total
dimensionality of 3 = 68, for a 2nd-total-order truncation of the PCE expansion. Note that since the KLE implementation
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Fig. 8 Final orbital energy results for U = 0.95, ? = 2

is different for this last case, the Monte Carlo dataset is also different, though the input dispersion settings are identical.
These results are preliminary, and further work is needed to make definitive statements about the performance

of Monte Carlo vs. PCE for this problem. However, some early observations can be made. In general, Monte Carlo
estimates will steadily decrease in error as the number of samples is increased. For PCE, the ?-total-order truncation
limits the minimum error of the estimate, so although the convergence may be faster than Monte Carlo the estimates will
then plateau. This behavior is observed in some cases, most clearly in Fig. 10a. However, the expected trend is often
obscured by the randomness inherently present in these results; while the convergence predicts a monotonic decrease in
error for the Monte Carlo results, this is often not the case due to outliers present in small sample sizes.

In general, the filtered PCE results do perform the best of the three categories. The unfiltered results are typically
worse than the filtered results as expected, with the exceptions of Figs. 8a and 12a where they perform roughly equally.
In some ways, the more surprising result is that the unfiltered cases do not perform significantly worse than they did —
after all, they clearly violate the PCE assumption of a smooth input-QoI relationship. This seems to be because the
impact cases represent such a small number of the total trajectories, only about 0.1%. If the input dispersions had
significantly higher variance, or if the problem setup were otherwise changed such that the impact cases represent a
larger portion of the results, this discontinuity may become a larger obstacle. Thus, the importance of the bifurcation
issue is strongly dependent on the specific problem and input dispersions.

Comparing the results for 2nd- and 3rd-total-order truncation between Figs. 7 & 8 and Figs. 9 & 10, respectively,
the ? = 3 results do not appear to outperform Monte Carlo by as much overall. This comparison represents an
interesting tradeoff in that ? = 3 does provide more accurate PCE results, but it also significantly increases the number
of coefficients and thus the number of samples required for a given sample size factor. Because the number of samples
required is nearly an order of magnitude larger, Monte Carlo also in general performs better. The choice of total order
truncation is strongly application dependent; e.g., is a 1% error acceptable or not for the mean estimate? The order of
truncation required to achieve the desired accuracy then affects the Monte Carlo vs. PCE tradeoff.

Comparing the U = 0.95 results with the U = 0.99 results, overall the higher-dimensional cases perform better
than expected. The larger sample sizes required again drive better Monte Carlo performance, but unlike increasing ?,
increasing U only improves the accuracy of the KLE approximation, not the PCE convergence. While the results in Figs.
11 and 12 are perhaps incrementally worse than the corresponding U = 0.95 results, the difference is small and again
obfuscated by the randomness present in all of the results.
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Fig. 9 Final flight path angle results for U = 0.95, ? = 3
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Fig. 10 Final orbital energy results for U = 0.95, ? = 3
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Fig. 11 Final flight path angle results for U = 0.99, ? = 2
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Fig. 12 Final orbital energy results for U = 0.99, ? = 2
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IV. Challenges and Future Work
There is significant further work to pursue in analyzing the performance of Monte Carlo vs. PCE for this problem,

as well as a number of open questions. To begin, a near-term step is to model some of the dispersed inputs using a
uniform distribution, and to truncate Gaussian distribution where necessary (such as in the KLE expansion for density,
which cannot be negative). While the measurement matrix 	 is built using only orthonormal Hermite polynomials for
this study, it will be relatively straightforward to modify this matrix to use orthonormal Legendre polynomials for the
input variables modeled using uniform distributions [11]. Another future addition is correlations between the random
inputs, which will require modification of the PCE approach but is feasible [32]. Considering alternative modeling steps
for the density KLE, such as representing the log of the density using a KLE in order to fit a log-normal distribution, is
also a potential future addition.

One of the significant limitation of these results so far is the randomly-varying nature of the PCE and Monte Carlo
performance. A near-term step is to implement k-fold cross-validation for the PCE results to obtain a more robust
measure of the PCE performance compared to Monte Carlo [33]; this same approach could also be applied to the Monte
Carlo results that used a subset of the full data. In addition, the value of the tuning parameter f should be optimized
for each scenario, including varying f with the number of samples # [34]. The current implementation heuristically
compares three values of f held constant with sample size, and saw some significant variation, so an optimized and
varying f should result in notable improvement for the PCE results.

This study compares a higher-dimensional case with two lower-dimensional sets of results, but further comparison
of how PCE performance is affected by increasing dimensionality driven by increasing KLE accuracy is an item of
future interest. The expected result is that as the dimensionality of the problem increases, at some point PCE will
perform categorically worse than Monte Carlo due to the curse of dimensionality, but identifying roughly where this
transition occurs for the aerocapture problem is of interest.

Another avenue for future work is to consider other aerocapture scenarios, such as lift-modulated control or scenarios
at other planets, and to consider other QoIs. In this study PCE results for final orbital energy seemed to perform
somewhat better than the results for final flight path angle, so it is possible that other QoIs such as peak heat-rate are
significantly more- or less-suitable for PCE.

Finally, an open question of general interest as well as to this study in particular is: when is an exponential atmosphere
model good enough? Certainly the answer is dependent not only on the aerocapture scenario under study, but more
importantly on the required fidelity/accuracy for that particular application. It is relevant to this work, however, because
these results show that PCE is most useful when the KLE representation of density can tolerate around 5% error, and
when the number of other dispersed inputs is not too high. Because the U = 0.95 KLE approximation already sacrifices
some accuracy, it is not immediately clear to what extent this model of density is more accurate than an exponential
model. Using an exponential model would simplify the problem significantly, and the much lower dimensionality would
allow for a range of other UQ techniques that in this study are precluded by the 18-dimensional problem [1]. In other
words, in order for it to be worth it to use this UQ framework with a KLE density model, that density model should still
gain sufficient accuracy over the exponential model.

V. Conclusions
This study demonstrates that a KLE expansion is a practical method to represent high-fidelity atmospheric density

data in a finite-dimensional way. This representation then enables the use of UQ techniques beyond Monte Carlo, and
PCE via compressed sensing is particularly well-suited to the problem since the dimensionality is still relatively high.
Preliminary results show that PCE does outperform Monte Carlo when capturing the mean and variance of the final
flight path angle and specific orbital energy from an aerocapture scenario at Mars. Filtering out trajectories that impact
the surface noticeably improves performance, at the expense of being unable to capture statistics that include those cases.
Because the benefit of PCE is faster convergence, and because it does still suffer from high dimensionality, the methods
outlined in this study are most applicable to early-phase studies or broad parametric sweeps. In those applications, the
benefits of the smaller required sample size can be realized while the approximation made by the KLE can be tolerated,
and the number of other dispersed inputs is still relatively small.
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