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n Students	

q ~600	undergraduate	students	

q ~300	graduate	students	

n 3600	Alumni/	1600	in	Colorado

n 36	Tenure-Track	Faculty	(2.5	budgeted	elsewhere)	
n $21.8M	in	research	expenditures	(FY12)	
n 	4.5	Instructors,	Senior	Instructors,	Scholars	in	Residence	
n 	6	Research	Faculty;	numerous	Research	Associates	
n 	8.5	Support	Staff,	not	including	Research	Centers

Aerospace	Engineering	Sciences	 
Department	
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2008	University	of	Colorado	President’s	Award	for:	

1st	Outstanding	Academic	Leadership	in	Undergraduate	Student	

Success		

2nd	Outstanding	Academic	Leadership	in	Graduate	and	Professional	

Student	Success	

Ranked	among	the	top	aerospace	Ph.D.	programs,	ranked	as	high	as	

2nd	by	the	NaKonal	Research	Council	in	2010

Ranked	1st	in	both	percent	and	absolute	graduate	female	parKcipaKon



Focus	Areas	for	Research	&	Graduate	Study	
Astrodynamics	&		
Satellite	NavigaZon BioastronauZcs

Remote	Sensing,	Earth		
&	Space	Sciences

Aerospace		
Engineering	Systems



Objectives	and	Description

Status	and	Approach Industry	Application

• Research has led to 175 conference  
and 117 journal papers 

• Graduate researchers have received 16 
national fellowships, plus numerous awards 

• Internationally recognized program for: 
• spacecraft control developments 
• hardware-in-the-loop simulations 
• complex dynamic simulations 
• experimental research on space actuation and sensing

Injected Electrostatic 
Force Field

GEO-DebrisGLiDeR

Electrostatic 
Tractor

Active Electrostatic 
Force Field

Inertial 
Thrusting

Dr. Schaub’s Research Group
Autonomous Vehicle Systems (AVS) Lab 

• Spacecraft formation flying and 
rendezvous and docking 

• Nonlinear dynamics and control 
• Attitude dynamics and control 
• Fault tolerant, autonomous control 
• Space debris mitigation and remediation 
• Visual relative motion control 
• Touchless despinning of passive space objects 
• Gossamer structure dynamics such as tethered tugging or 

charged membrane structures

Strengths Capability

• Nonlinear	dynamics,	
estimation	and	control		

• Advanced	spacecraft	attitude	
and	relative	motion	control	

• Sensor	modeling	and	
estimation	integration	

• Experimental	astrodynamics	
• Space	debris	dynamics	and	
analysis	

• Space	debris	mitigation

• Dynamic	analysis	of	complex	
space	concepts	

• Fast	numerical	simulations	in	C	
and	OpenCL	

• Hardware	experiments	and	
simulations	

• Virtual	reality	dynamic	
simulations	

• Force/torque	modeling	due	to	
spacecraft	charging

University of Colorado
Boulder

 Schaub Research Highlights, hanspeter.schaub@colorado.edu, September 23, 2013

Electrostatically Inflated 
Membrane Structures (EIMS)

�6

- Studying how charged 
membranes behave. 

- Suitable for shape-
changing HAMR modeling 

- EIMS provide light-weight 
deployable structures

University of Colorado
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Electrostatically Inflated 
Membrane Structures (EIMS)
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- Studying how charged 
membranes behave. 

- Suitable for shape-
changing HAMR modeling 

- EIMS provide light-weight 
deployable structures

University of Colorado
Boulder

Touchless Detumbling Research Overview – March 12, 2014

Laboratory Experiments

�6

Uncontrolled Spin
Settles in about 14 

seconds

Settles in about 14 
seconds

Takes minutes to settle

Aerospace Engineering Sciences
University of Colorado, Boulder
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Outline

• GEO Debris Environment


• Electrostatic Forces and Torque


• Three-Dimensional Spin Control


• Basilisk Astrodynamics Simulation 
Framework


• Conclusions
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GEO Debris Environment
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Visualization of GEO Debris
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ECI Frame ECEF Frame

Complex relative motion of uncontrolled GEO debris readily visualized from the Earth-fixed frame
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Localized GEO Debris Congestion

• 1145 objects extracted from 02/28/14 TLE set (760 uncontrolled RSOs)

• Nominal launch traffic, fragmentation events, SRM, MLI not considered here
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Localized congestion  
forecast for five years: 
near-misses each day.

Relative velocities of 
congestion forecast: 
speed of near-misses.
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University of Colorado
Boulder

GEO Rocket Body Explosion
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GEO Debris Risk Metric
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GEO Debris Risk Summary
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Electrostatic Tug Concept
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Video clip from the documentary “Collision Point, the Race to Clean up Space.”
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Electrostatic Force and Torque 
Modeling
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Equilibrium charge/potential is calculated as INet = 0 

GLiDeR:         IPH + Ie + Ii + ITrans + IAux = 0 

Debris:            IPH + Ie + Ii - ITrans + ISEE = 0

Charge transfer 
(electrons or ions)Ion and electron 

collection from 
plasma

Photo-electron 
emission

Debris

GLiDeRTM

Secondary electron emission (SEE)

Auxiliary charge 
emission

Charge Transfer Study
Photo-electron emission

University of Colorado
Boulder

Ion and electron 
collection from 
plasma
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Multi-Sphere-Method (MSM)
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Electrostatic Modeling

18
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Simple	3x1	cylinder,	

representative	of	

Centaur	upper			

stage	rocket
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crease in the repulsion between very close like-charged ob-
jects, it over-predicts the magnitude of forces at very close
separation distances. Similarly, the torques at locations
shown in red are not accurately captured by the model.
Therefore only the more accurate data points in the middle
of the range from Maxwell are used for the MSM param-
eter fit.

Fig. 5. Multi-Sphere Method parameters for cylinder geometry.

Table 1
Parameters of three-sphere MSM for cylinder.

Sphere 1 Sphere 2 Sphere 3

X Coordinate (m) 0 0 0
Y Coordinate (m) !1.1454 0 1.1454
Z Coordinate (m) 0 0 0
Radius (m) 0.5959 0.6534 0.5959

Fig. 6. Force comparison – MSM and Maxwell.

Fig. 7. Torque comparison – MSM and Maxwell.

16 D. Stevenson, H. Schaub / Advances in Space Research 51 (2013) 10–20

spheres result in the final model. Moreover, the parameter
space is reduced from 28 to just 4.

3.2. Nonlinear fit

If there is a linear relationship between the parameters
of a system and the output of that system, a linear regres-
sion can be performed to find an optimal solution for those
parameters that minimizes some error norm between the
model output and a truth output. This is even possible if
the system can be linearized, but in the case of the MSM,
the capacitance matrix inversion prohibits a linearization
of the system. The input in this case is the external sphere
position, the outputs are the force and torque values on the
modeled body for that external sphere position, and the
parameters are the sphere positions and sizes, as simplified
by the symmetry arguments discussed above. A Gaussian
least squares differential correction method is used to deter-
mine the optimal parameter set for the MSM (Junkins,
1978). Normally, this method requires partial derivatives
of the model output function with respect to the parame-
ters. The matrix inversion in the MSM model also prevents
an analytical form of these partials, so a finite difference
method is used.

This entire Gaussian least squares differential correction
algorithm is performed by the nonlinear fit function ‘nlin-
fit’ in MATLAB. This function iteratively refits a weighted
nonlinear regression, where the weights at each iteration
are based on each observation’s residual from the previous
iteration. These weights serve to down-weight points that
are outliers so that their influence on the fit is decreased.
Iterations continue until the weights converge. Bisquare
weights are used, which seek to find a curve that fits the
bulk of the data using the usual least-squares approach,
while minimizing the effect of outliers (DuMouchel and
O’Brien, 1989; Holland and Welsch, 1977). Moreover, the
relative weight of each data point can be prescribed which
is useful if fitting to the correct forces is more important
than obtaining accurate torques, for example. As with
any nonlinear fit, global convergence of the optimal solu-
tion is dependent on the initial guess of the sphere param-
eters. A manual search is used to determine an appropriate
set of initial parameters. Although the symmetry argu-
ments as implemented above aid in the computation effort,
this approach can break down when the model consists of

many spheres. Other schemes to populate a given geometry
with numerous spheres are being investigated. However, as
shown with the results below, this MSM approach is yield-
ing practical and implementable solutions.

4. Model verification

The algorithms described above are run to determine the
optimal MSM parameters to model the electrostatic inter-
actions of the aforementioned 1 m diameter by 3 m length
cylinder. An initial guess with three spheres is chosen,
where the center sphere lies at the origin and the mirrored
side spheres lie along the y-axis. Remember that not the
entire range of locations shown in Fig. 2b is used in the
fit, but only the separation distances deemed accurate
based on assessment of Fig. 3. That is, those with a sur-
face-to-surface separation greater than 1 m and with a cen-
ter-to-center separation smaller than 15 m.

The geometry of the resulting spheres, superimposed on
the actual cylinder, is shown in Fig. 5, with parameters
listed in Table 1. This model will be used throughout the
remainder of the paper. While the spheres intersect each
other in physical space, this does not present a problem
in the framework of the MSM.

4.1. Quantifying fit

A large effort in the current research is in verifying the
quality of the aforementioned nonlinear fit. Once a set of
parameters is chosen, the accuracy of the model compared
to numerical results from Maxwell must be determined.
While the nonlinear fit returns a mean squared error norm
that can be used to compare the quality of one fit to
another, it is desirable to analyze in more detail where in
the physical space surrounding the geometry a particular
MSM parameter solution fits the Maxwell data well or
poorly.

Figs. 6 and 7 show the visual metric that is used to ana-
lyze the quality of a given parameter set, for forces and tor-
ques respectively. In Fig. 6a, the output values from the
MSM are plotted against the numerical truth model (Max-
well) at each external sphere position, with a line of slope
equal to 1 to show the desired position of data points. Data
points within the region used for parameter selection are
shown in black, while extraneous points are shown in
red.1 While this plot shows that the current MSM over-pre-
dicts the higher forces, it does not contain any information
about where these over-predictions occur, although we can
gather that this happens when the external sphere is closer
to the cylindrical body. Fig. 6b displays the interpolated
absolute error at a given external sphere position on the
x- and y-axis, using a logarithmic color scale. Because the
model does not capture induced effects, which causes a de-

Fig. 4. Axial and planar symmetry considerations.

1 For interpretation of color in Fig. 6, the reader is referred to the web
version of this article.

D. Stevenson, H. Schaub / Advances in Space Research 51 (2013) 10–20 15
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isolated geometries (Soules, 1990). When the boundary
conditions become more complex, FEM solvers can create
linearized solutions of Poisson’s equations at each element,
from which charge distributions and forces can be derived.
Out of the wide range of commercially available electro-
static modeling software, Ansoft Maxwell 3D (http://
www.ansoft.com/products/em/maxwell) is chosen for veri-
fication of the MSM due to its ability to resolve various
field parameters (such as surface charge distribution, force
and torque), parameter sweep capabilities, computationally
efficient mesh refinement, and relative ease of use. Note
that the MSM setup could be performed using any electro-
static field solver to provide the three-dimensional force
field input into the MSM optimization routine.

For this scenario a cylinder measuring 3 m in length by
1 m in diameter will be modeled because it represents a sim-
ple shape with significant 3D variation from a sphere, sized
similar to the once popular GEO dual-spinner configura-
tions. This cylinder and an external sphere with a 1 m
diameter are created as solid 3D shapes in Maxwell, as
shown in the left hand of Fig. 2a. Perfectly conducting
material properties are assigned to both shapes, and a volt-
age excitation of þ30 kV is prescribed on both. An external
surface is held at zero voltage, and is removed from system
origin in each direction at 5000 times the system dimension.
Next, the FEM software creates solutions for the electro-
static force and torque on the cylinder (or a more complex
geometry), refining the mesh grid according to its algo-
rithms, while the location of the external sphere is swept
through the locations shown in Fig. 2b, which represent
possible relative separation positions encountered in
close-proximity spacecraft formations or docking scenar-
ios. Due to the symmetry of this particular shape, analysis
is necessary in only one quadrant of a plane that contains
the cylinder’s axis. This force and torque data set is ex-
ported to be used for a nonlinear fit to search for the opti-
mal sphere parameters. When the modeled shape and the
external cylinder intersect, Maxwell returns an empty data
point, which in turn is ignored by the nonlinear fit.

Caution must be taken when comparing the force data
retrieved from Maxwell to a lower order model at certain
relative positions. Remember that the Multi-Sphere
Method is based upon the position-dependent capacitance
charge model as outlined in the previous section. This
model does not capture the induced charge effects that
result when the separation distance of two charged objects
is very small, i.e. when the relation rij " Ri is not true. If
this is the case, the repulsion or attraction causes the charge
in each conductor to be shifted away from or towards the
other object. As a result, the center of charge is not at the
center of the object, which can change the magnitude of the
forces and torques significantly. If the MSM is populated
throughout its volume with many spheres, these induced
charge effects may be captured. For the scope of this paper,
however, the cylinder is populated with no more than three
spheres, so the induced charge effects will not be captured
in the radial dimension of the cylinder. Therefore, it is nec-
essary to ignore the data points from Maxwell with separa-
tion distances that are small enough to contain induced
charge effects. Secondly, when large separation distances
are considered, the solution from Maxwell can be shown
to contain numerical errors. To ensure that these anomalies
do not affect the MSM solution, data points with large sep-
aration distances must also be removed.

In order to determine the upper and lower bounds of the
separation distances that can be used for MSM verifica-
tion, a simulation is run in Maxwell with two identical
spheres, over the range of separation distances chosen
above. Meanwhile, the force can also be calculated using
the position-dependent capacitance model for two spheres,
as laid out in Eqs. (1)–(5). This Capacitive Force Model is
compared to the Maxwell Force Data in Fig. 3. Both
spheres have a diameter of 1 m; one sphere is held at
V 1 ¼ þ30 kV while the other is allowed to vary through
the voltages shown in the figure. In order to highlight the
computational errors at large separation distances, the
forces are plotted on a logarithmic scale. In this regime,

Fig. 2. Maxwell 3D model and parameter sweep for data export.

D. Stevenson, H. Schaub / Advances in Space Research 51 (2013) 10–20 13

crease in the repulsion between very close like-charged ob-
jects, it over-predicts the magnitude of forces at very close
separation distances. Similarly, the torques at locations
shown in red are not accurately captured by the model.
Therefore only the more accurate data points in the middle
of the range from Maxwell are used for the MSM param-
eter fit.

Fig. 5. Multi-Sphere Method parameters for cylinder geometry.

Table 1
Parameters of three-sphere MSM for cylinder.

Sphere 1 Sphere 2 Sphere 3

X Coordinate (m) 0 0 0
Y Coordinate (m) !1.1454 0 1.1454
Z Coordinate (m) 0 0 0
Radius (m) 0.5959 0.6534 0.5959

Fig. 6. Force comparison – MSM and Maxwell.

Fig. 7. Torque comparison – MSM and Maxwell.
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sphere is used to remove the angular rotation on a cylinder
using only charge control. Since this scenario requires real-
time knowledge of electrostatic torques, the MSM is an ele-
gant non-FEM model that can achieve this simulation and
performs it many orders of magnitude faster. A uniform
density 3 m ! 1 m cylinder (as before) is placed in deep
space at a constant separation distance d ¼ 10 m from a
sphere of radius R ¼ 0:5 m, with orientation defined as in
Fig. 9. This scenario represents a spacecraft (the sphere)
that flies in proximity of a debris object (the cylinder).
Using charge control devices such as electron or ion guns
aimed at the debris cylinder or deep space, the sphere
spacecraft can control both voltages V 1 and V 2 in order
to de-spin the cylinder (King et al., 2002). The simulation
assumes that a separate relative motion feedback control
maintains a constant relative separation. This allows the
study to focus on the impact of the electrostatic torques.

The cylinder is constrained to rotate about its center, in
the plane that it makes with the sphere, and given an initial
angular velocity x0 ¼ 2 deg/s. A three-sphere MSM with
the parameters determined earlier is used to determine
the Coulomb interactions during the simulation. Further
simulation parameters are given in Table 4.

While it is possible to control the final attitude of the
cylinder using both equal and opposite polarities on the
crafts, the scope of the de-spin simulation for this paper
is limited to a rate based attitude control to remove the
angular motion from the cylinder. To this end, the simplest
control to implement with a charge control device is one
where V 1 ¼ #V 2, i.e. the sphere spacecraft transfers all its
charge to the cylinder, resulting in attractive interaction.
Note that there are issues with sensing and controlling
the voltage on a remote body that are not addressed here.
Since either polarity results in the same torques, the control
is simplified further such that 0 < V 2 < V max. The rate of
voltage control is not limited since charge control devices
operate at a time scale that is orders of magnitude faster
than the duration of this simulation. The one dimensional
attitude dynamics for body 1 are

I _x ¼ L ð8Þ

where L is the electrostatic torque exerted on the cylinder.
The following positive semi-definite Lyapunov function is
chosen,

V ðxÞ ¼ 1

2
Ix2 ð9Þ

with derivative

_V ðxÞ ¼ xðI _xÞ ð10Þ
¼ xL ð11Þ

Although the exact electrostatic torque L is not analyt-
ically known, it is possible to prove stability using only
the sign of L. To start, the symmetry of the cylinder is
invoked to limit its rotation parameter to #90& < h
< 90&. When opposite polarity (i.e., attractive) control is
applied between the bodies, the side of the cylinder closer
to the sphere receives a stronger attraction than the far
side. In other words,

L
> 0 if h > 0

< 0 if h < 0

!
ð12Þ

This means that there is desirable controllability in only
two of the four quadrants for any given rotation direction.
Assuming a bang–bang control that turns the voltage levels
either fully on or off, the following control algorithm is
chosen:

x

+ #
h + OFF ON

# ON OFF

Fig. 8. Surface charge density comparison between Maxwell 3D and a
three-sphere MSM.

Fig. 9. Depiction of cylinder de-spin simulation.
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Fig. 3. Various uniform point distributions on the surface of a sphere.

remaining parameter to choose is the spheres’ radii R, which
are assumed constant throughout the SMSM model. While the
goal is ultimately to match Coulomb forces and torques with
external objects, only one scalar invariant quantity is necessary
to determine an optimal radius. In contrast to the VMSM
method where increasing numbers of sphere locations and
radii must be chosen as the number of spheres increases, the
SMSM method only needs to determine a single parameter R
once uniform positions are chosen. This provides a significant
simplification of the model development with a large number
of spheres. The self-capacitance of an isolated conductor is
dependent only on its geometry, and is therefore a good
candidate scalar quantity for determining the optimal sphere
radius R.

For a modeled sphere with radius RS , the self-capacitance C
is analytically known

Csphere = RS

kc
. (7)

Meanwhile, the capacitance of the MSM can be computed by
summation of the charge qi on each sphere in the model (as
determined by the process in Section II) for a given voltage V

CMSM = Q
V

=

n∑
i=1

qi

V
. (8)

A simple optimizing function based on a golden section search
and parabolic interpolation is used to choose a radius R that
minimizes

f (R) = CMSM − Csphere. (9)

This is performed for various n numbers of spheres in the
model.

To analyze the optimal sphere size across various geome-
tries, comparing the total surface area 4πR2n of every sphere
in the MSM to the total surface area S of the modeled geome-
try provides geometric insight. This relation is represented by
the packing parameter γ

γ = 4πR2n
S

. (10)

For the benchmark spherical spacecraft case being modeled
with the SMSM, the optimal packing parameter is plotted
against the number of spheres in the model in Fig. 4.
Interestingly, even though the number of spheres in the model
and therefore the spacing between them changes, the parameter
γ appears to converge to a constant value.

Fig. 4. Optimal packing parameter for surface MSM on sphere.

Fig. 5. Two analytic models for the two-sphere system that capture induced
effects. (a) First-order induced charge model (repulsion). (b) Electrostatic
MOIs.

C. Truth Models

While the radii of the spheres in the model are optimized
as above to match the self-capacitance of the modeled sphere,
validation requires that the resultant electrostatic forces match
those from numerical and series summation solutions. A sim-
ple system is used that consists of two spheres with radii
RS = 0.5 m, various separation distances d , and equal as
well as opposite sphere voltages V = ±30 kV.

The simplicity of the two-sphere system lends itself to
several approximate analytic solutions where more complex
systems do not. The PDC model for two spheres captures
the relationship between the prescribed voltage and the total
charge on each sphere, but not the induced charge effects.
If each sphere is modeled with a single charge at its center,
the resulting voltage in space is not constant at the sphere
boundaries, as it would be on a conducting body. The two
approaches in Fig. 5 attempt to offset this anomaly by ensuring
that the spheres form equipotential surfaces. They are valid
only for a system where both conducting spheres are of equal
radius and are held at equal magnitude voltages, as is the
case here.

Surface MSM
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Fig. 6. Charge density distribution on two spheres (V1 = V2 = +30 kV).
(a) Maxwell3D. (b) MSM with 30 spheres.

The first-order induced charge model, shown in Fig. 5(a),
attempts to capture-induced effects by a 1-D change in sep-
aration distances. The separation d between the charges qA
and qB that are computed using the PDC matrix, is adjusted
by an extra distance x . This distance is chosen such that VL
and VR are equal, resulting in a cubic equation in x [22]. The
figure shows an increased separation as for the repulsion case;
attraction would result in a decreased separation distance.

In Soules’ method of images (MOI), shown in Fig. 5(b),
successively smaller image charges qi are placed at distances
xi along the line of centers to approximate the induced charged
distribution [23]

qi = ± rqn−1

d − xn−1
(11a)

xi = RS
2

d − xn−1
. (11b)

Here n > 1, q1 is determined for a given voltage using the
PDC model, and x1 = 0. In (11b), the successive charges
switch polarity (−) for the repulsion case and maintain the
same polarity (+) for attraction [20]. The algorithm is imple-
mented using 19 spheres as in [22].

While the two-induced charge models discussed above
provide a vast improvement over the PDC model in force
prediction at small separation distances, Maxwell3D is found
to produce the most accurate solution when the simulation is
tuned properly. Therefore, the Maxwell3D solution is used as

Fig. 7. Error in force between two spheres for various electrostatic models.
(a) Repulsive forces (V1 = +30 kV, V2 = −30 kV). (b) Attractive forces
(V1 = V2 = +30 kV).

the truth model for verification of the surface populated MSM.
The mesh and charge distribution are visible in Fig. 6(a).

D. Force Comparison

Fig. 6 shows the charge density distribution in both
Maxwell3D and on a 30-sphere surface populated MSM. This
qualitatively highlights the ability of the SMSM to capture
induced charge effects when enough spheres are present on
the object surface. To offset the difference in surface areas, the
charge density σi on each sphere in Fig. 6(b) is normalized
by the factor γ from (10)

σi = γ
qi

4πRi
2 . (12)

Radii for the models are chosen to fit capacitance of the sphere,
as discussed above, resulting in

R (10 spheres) = 0.1460 m (13)

R (30 spheres) = 0.0835 m. (14)

Fig. 7 shows the percent error for various models at a range
of separation distances, for the attractive and repulsive cases
[Fig. 7(a) and (b), respectively]. Percent error is defined as
follows:

Err = Fmodel − FMaxwell

FMaxwell
. (15)
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D. Force Comparison

Fig. 6 shows the charge density distribution in both
Maxwell3D and on a 30-sphere surface populated MSM. This
qualitatively highlights the ability of the SMSM to capture
induced charge effects when enough spheres are present on
the object surface. To offset the difference in surface areas, the
charge density σi on each sphere in Fig. 6(b) is normalized
by the factor γ from (10)

σi = γ
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2 . (12)

Radii for the models are chosen to fit capacitance of the sphere,
as discussed above, resulting in

R (10 spheres) = 0.1460 m (13)

R (30 spheres) = 0.0835 m. (14)

Fig. 7 shows the percent error for various models at a range
of separation distances, for the attractive and repulsive cases
[Fig. 7(a) and (b), respectively]. Percent error is defined as
follows:

Err = Fmodel − FMaxwell
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D. Stevenson and H. Schaub, “Optimization of Sphere Population for Electrostatic Multi-Sphere 
Method,” IEEE Transactions on Plasma Science, Vol. 41, No. 12, Dec. 2013, pp. 3526-3535. 
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Fig. 10. MSM parameters for cylinder geometry.

TABLE I

PARAMETERS OF THREE-SPHERE MSM FOR CYLINDER

Fig. 11. Optimal packing parameter for surface MSM on cylinder.

collecting a full sweep of Maxwell3D truth data, followed by
a difficulty to implement nonlinear fit.

Now, the methodology in Fig. 9 is implemented. Since the
cylinder is still a fairly simple shape, manual algorithms are
used to populate the surface. For the end discs, a gold section
spiral is used much likely for populating the spheres in Fig. 3,
while on the circumference of the body, hexagonal packing is
implemented. Maxwell3D is used to determine that the self-
capacitance of the cylinder in space is

Ccylinder = 1.0616 × 10−10 C
V

. (20)

This is used to fit the optimal sphere radius, resulting in
Fig. 11, which shows the packing parameter γ as a function of
the total number of spheres n in the cylinder model. Clearly,
the optimal γ values do not match those for the sphere in
Fig. 4. For this reason, R must be fit for a specific sphere
distribution to match the capacitance of a given model shape.

Fig. 12. Charge density distribution on SMSM of cylinder and sphere
(V1 = V2 = +30 kV).

A cylinder model with n = 105 spheres (R = 0.0731 m)
and a sphere model with n = 30 spheres as above
(R = 0.0835 m) is shown in Fig. 12. Each is held at
V = +30 kV and the induced charge effects are clearly visible
from the charge distribution throughout the shapes.

B. Results

Figs. 13 and 14 show the accuracy of the force and
torque, respectively, calculated by the VMSM model with
three spheres and the surface populated model (105 spheres
in the cylinder and 30 spheres in the sphere), compared with
the truth data from Maxwell3D. Fig. 13(a) shows a 1–1 plot
between the MSM models and the Maxwell3D data, where
the black line represents perfect matching between the two
models. The three-sphere VMSM overpredicts the larger forces
that correspond to small separation distances. The drawback
of this visualization is that it is not possible to see where in
relation to the cylinder the sphere is located for a given data
point. Fig. 13(b) and (c) rectifies this shortcoming, as they
show the absolute force errors compared with Maxwell3D,
for the three-sphere and surface-populated MSM, respectively.
A representative size cylinder and sphere are included for
reference, while the color legend is in logarithmic scale. The
same organization is used in Fig. 14 for the torques exerted
on the cylinder.

It is clear from the figures that the SMSM predicts the
forces much better at small separation distances across the
range of angles, but by about 6 m separation (12 craft radii),
the difference between the two models is fairly negligible.
For the case of torques, the three-sphere model actually does
a slightly better job at separation distances larger than 4 m
(eight craft radii). This is likely because the volume populated
model is fit directly to the Maxwell3D data, which has been
shown earlier to exhibit some accuracy discrepancies at this
range. Regardless, most Coulomb charge control applications
that do not involve docking occur at separation distances
beyond this range.

It is important to weigh the accuracy with computation and
setup times of the different models, as listed in Table II. The
first column gives the time for each model to compute a
force and torque value at each of the 82 relative positions.

Rocket-Body Detumble Application
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Fig. 13. Force comparison between MSM models and Maxwell3D.
(a) Both models compared with Maxwell3D. (b) Three-sphere VMSM errors.
(c) Surface MSM errors.

While this computation takes Maxwell3D about 1 h and
14 min at fairly moderate accuracy settings, the MSM with
three spheres completes the task in a fraction of a second.
Meanwhile, it takes the surface populated model (with
135 spheres in the system) about 16 s. The next column shows

Fig. 14. Torque comparison between MSM models and Maxwell3D.
(a) Both models compared with Maxwell3D. (b) Three-sphere VMSM errors.
(c) Surface MSM errors.

the numerical calculation time necessary for the setup of the
two MSM models. For the volume populated (three spheres)
MSM, this requires the complete set of data calculated ear-
lier by Maxwell3D, while the surface populated MSM only
requires a single numerical computation of the capacitance of
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While this computation takes Maxwell3D about 1 h and
14 min at fairly moderate accuracy settings, the MSM with
three spheres completes the task in a fraction of a second.
Meanwhile, it takes the surface populated model (with
135 spheres in the system) about 16 s. The next column shows

Fig. 14. Torque comparison between MSM models and Maxwell3D.
(a) Both models compared with Maxwell3D. (b) Three-sphere VMSM errors.
(c) Surface MSM errors.

the numerical calculation time necessary for the setup of the
two MSM models. For the volume populated (three spheres)
MSM, this requires the complete set of data calculated ear-
lier by Maxwell3D, while the surface populated MSM only
requires a single numerical computation of the capacitance of

VMSM vs SMSM Accuracy 
Comparison
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Fig. 10. MSM parameters for cylinder geometry.

TABLE I

PARAMETERS OF THREE-SPHERE MSM FOR CYLINDER

Fig. 11. Optimal packing parameter for surface MSM on cylinder.

collecting a full sweep of Maxwell3D truth data, followed by
a difficulty to implement nonlinear fit.

Now, the methodology in Fig. 9 is implemented. Since the
cylinder is still a fairly simple shape, manual algorithms are
used to populate the surface. For the end discs, a gold section
spiral is used much likely for populating the spheres in Fig. 3,
while on the circumference of the body, hexagonal packing is
implemented. Maxwell3D is used to determine that the self-
capacitance of the cylinder in space is

Ccylinder = 1.0616 × 10−10 C
V

. (20)

This is used to fit the optimal sphere radius, resulting in
Fig. 11, which shows the packing parameter γ as a function of
the total number of spheres n in the cylinder model. Clearly,
the optimal γ values do not match those for the sphere in
Fig. 4. For this reason, R must be fit for a specific sphere
distribution to match the capacitance of a given model shape.

Fig. 12. Charge density distribution on SMSM of cylinder and sphere
(V1 = V2 = +30 kV).

A cylinder model with n = 105 spheres (R = 0.0731 m)
and a sphere model with n = 30 spheres as above
(R = 0.0835 m) is shown in Fig. 12. Each is held at
V = +30 kV and the induced charge effects are clearly visible
from the charge distribution throughout the shapes.

B. Results

Figs. 13 and 14 show the accuracy of the force and
torque, respectively, calculated by the VMSM model with
three spheres and the surface populated model (105 spheres
in the cylinder and 30 spheres in the sphere), compared with
the truth data from Maxwell3D. Fig. 13(a) shows a 1–1 plot
between the MSM models and the Maxwell3D data, where
the black line represents perfect matching between the two
models. The three-sphere VMSM overpredicts the larger forces
that correspond to small separation distances. The drawback
of this visualization is that it is not possible to see where in
relation to the cylinder the sphere is located for a given data
point. Fig. 13(b) and (c) rectifies this shortcoming, as they
show the absolute force errors compared with Maxwell3D,
for the three-sphere and surface-populated MSM, respectively.
A representative size cylinder and sphere are included for
reference, while the color legend is in logarithmic scale. The
same organization is used in Fig. 14 for the torques exerted
on the cylinder.

It is clear from the figures that the SMSM predicts the
forces much better at small separation distances across the
range of angles, but by about 6 m separation (12 craft radii),
the difference between the two models is fairly negligible.
For the case of torques, the three-sphere model actually does
a slightly better job at separation distances larger than 4 m
(eight craft radii). This is likely because the volume populated
model is fit directly to the Maxwell3D data, which has been
shown earlier to exhibit some accuracy discrepancies at this
range. Regardless, most Coulomb charge control applications
that do not involve docking occur at separation distances
beyond this range.

It is important to weigh the accuracy with computation and
setup times of the different models, as listed in Table II. The
first column gives the time for each model to compute a
force and torque value at each of the 82 relative positions.
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Chapter 2: Technical Progress Reports Fast E-Force and Torque Modeling
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Figure 2.24: Comparison between SMSM Fitted VMSM Models

is slightly better than the “1-sphere shifted (c)” result as closed distances as the first is optimized
only over data up to 15 meters. However, the self-capacitance constrained solution is superior at
larger distances. Finally, the 2-sphere fit qualities as essentially identical as both optimizations
yielded the same result. With 2-spheres the fit quality is good near the craft with 5-15% errors,
and excellent at larger distances with errors far less than 1%.

2.1.2 Surface-MSM Setup Optimization

SMSM uniformly places many spheres of equal radius all over the surface of a spacecraft, and
then varying the radii of all spheres until the self capacitance of the MSM model matches that
of the actual object. Functions are written to equally place points on the surface of a rectangle,
cylinder, and sphere. These pieces can be combined to create many complex prototype spacecraft
shapes. The self capacitance of simple objects such as spheres, ellipsoids, and disks are known
analytically, and there are good empirical approximations for the self capacitance of a rectangle.
More complex shapes, such as a general spacecraft, must be modeled with an FEA program,
such as Maxwell, to find the capacitance.

The problem of placing points uniformly on the surface of a sphere is well-studied in computer
science.8 A spiral based on the golden spiral is inscribed on the surface of a sphere much like
a candy cane. Points are placed on this line at longitudes separated by the golden angle � =

⇡(3 �
p

5). This is shown below for 50 spheres. The color indicates the charge on that sphere if
the object were uniformly charged. Notice that the color scale indicates very little change in the
actual surface charge density, which is analytically constant for a sphere.

For a cylinder, a 2D version of the golden spiral detailed above is used for the ends and
hexagonal packing is used for the body. This is shown using a total of 50 spheres in the figure
below.

To make the rectangle four inputs are required: the length Lx, width Ly, approximate separation
dx, and self capacitance C. The rectangle is divided into a grid with nx and ny points along it’s
length and width. nx and ny are defined below:

nx = round(Lx/dx), ny = round(Ly/dx) (2.28)

Then the Matlab function meshgrid() is used to make matrices for this grid. These matrices are
then vectorized and a equally sized vector of zeros is added to give the 3D positions of each
sphere in the model. Lastly, the radius of each sphere is varied by the Matlab program fsolve() to
match the self capacitance of the MSM model to that of the actual object.

H. Schaub University of Colorado 38/76
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Video was recorded with a Canon G1 video camera as HD 1440 1080i format at 29.97 frames
per second. Footage was captured from both profile and end views, as can be seen in Figure 1,
with the motion of a single droplet transposed on a single image throughout its orbit.

(a) Profile view (b) End view

Fig. 1. Video capture of ISS experiment

III. MULTI-SPHERE METHOD

Analytic solutions of Poisson’s equation (Eq. 1), which defines electrostatics in 3D space, are
rarely possible for complex geometries.

r2�(x) = �⇢(x)
✏0

(1)

Numerous methods exist to approximate electrostatic interactions to various degrees of fidelity. To
predict first order electrostatic interaction, charged geometries can be modeled by point charges [18]
or by conducting spheres [19]. Since these methods lack the ability to resolve the charge distribution
on non-symmetric bodies, they are incapable of predicting electrostatic torques and off-axis forces.
Meanwhile, highly accurate numerical solutions are possible by Finite Element Analysis (FEA), but
this approach lacks the computational speed necessary for faster-than-realtime 6 Degree of Freedom
(6DOF) charged relative motion simulations. The Multi-Sphere Method (MSM), developed for use
in spacecraft Coulomb charging research, uses a collection of spheres with fixed sizes and relative
positions to model a conducting 3D shape. [20, 21]

Figure 2 depicts satellite A, modeled by n optimally placed spheres, in the vicinity of the simple
object B. Both objects are assumed for now to be conducting and reside at voltage levels �A and
�B . The voltage �i on a given sphere is a function of the charge qi on that sphere and the charges
on its neighboring spheres. This relation is governed by Eq. (2), [22] where Ri represents the radius
of the sphere in question and ri,j = rj � ri is the center-to-center distance to each neighbor. The
constant kc = 8.99⇥ 109 Nm2/C2 is Coulomb’s constant.

�i = kc
qi
Ri

+
mX

j=1,j 6=i

kc
qj
ri,j

(2)

This relationship is most valid when ri,j � Ri, resulting in a uniform charge distribution on any
given sphere. As more spheres are introduced and their size decreases relative to the system size,
results become more accurate.

Needle/Droplet Experiment on ISS
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of a geometry. Moreover, the Multi-Sphere Method (MSM) can be modified to include insulating
materials with constant charge.

For spheres within the insulator, a charge is specified rather than a voltage, which are compiled
in the vector qI . Combining the mutual capacitance relationship in Eq. 2 for each of the conducting
spheres yields

�C = kc[CC ]
�1

qC + kc[CC,I ]
�1

qI (7)

where [CC,I ]
�1 is the mutual capacitance matrix populated with separation distances between the

conducting spheres and insulated spheres, with no self capacitance terms. This relationship can be
solved for qC so that the charge on all spheres in the system is known, at which point Eq. 5 and 6
can be equated to determine the force and torque on all bodies in the system. If knowledge of the
resulting voltage on the insulating components is desired, it can be determined by:

�I = kc[CI ]
�1

qI + kc[CI,C ]
�1

qC (8)

where [CI ]
�1 is populated with sphere sizes and relative distances between the insulator spheres,

and [CI,C ]
�1 is the transpose of [CC,I ]

�1.

IV. SIMULATION PARAMETERS

With the Multi-Sphere Method framework in place, the remaining task is to choose an appropriate
location and size for all the spheres in the model. In order to model the charged knitting needle,
spheres are placed at even distances along the center axis of the needle. This is where the MSM is
advantageous over the BEM, which would require elements along the surface of the needle rather
than within its volume. The remaining parameter then is to determine the sphere size for a given
spacing. This is achieved as in Reference 21, using a nonlinear regression to match the total self
capacitance of the needle in space, determined by modeling the geometry in the FEA software
Ansoft Maxwell 3D. The capacitance of the MSM body can be computed by summation of the
charge qi on each sphere in the model for a given voltage �:

CMSM =
Q

�
=

nP
i=1

qi

�
(9)

The needle used in the simulation is selected to be 200 mm long with a diameter of 6.5 mm, with
the spacing of the spheres set to 6.5 mm. The MSM model consists of 31 spheres, with optimized
radius R=4.406 mm. For a conducting geometry, the charge distribution matches the higher order

(a) Maxwell 3D

�[C/m2]

⇥10�5

�2

�1.5

�1

(b) MSM

Fig. 3. Charge distribution along knitting needle
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ˆb2

ˆb3

ˆr

ˆeL

�

FThrust

ˆX

ˆY

ˆZ

Electrostatic force

between 2 spheres

Figure 3. 3 sphere MSM cylinder and spherical spacecraft configuration.

axis pointed up, the y axis pointed along the relative distance vector, and the x axis completing a
right-handed system. The cylinder has body fixed aircraft-type coordinates with ˆb1 through the long
axis, ˆb3 pointed down , and ˆb2 for a right handed system. This positive cylinder pitch of is described
as a positive ˆb2 rotation.

The electrostatic forces are determined by the charges residing on each sphere. These result
from the prescribed electric potentials, according to the self and mutual capacitance relationships in
Equation 1, where kc = 8.99 ⇥ 10

9Nm2/C2 and qi is the charge of each sphere.28, 29

�i = kc
qi
Ri

+

mX

j=1,j 6=i

kc
qj
ri,j

(1)

These relations can be represented in matrix form

2

664

�1

�2

�3

�4

3

775 = kc

2

664

1/R1 1/ra 1/rb 1/rc
1/ra 1/R2,a 1/l 1/2l
1/rb 1/l 1/R2,b 1/l
1/rc 1/2l 1/l 1/R2,c

3

775

2

664

q1
qa
qb
qc

3

775 (2)

Inverting the matrix multiplying the charge at a given instant in time produces the forces and
torques given by the summations

F 2 = kcq1

cX

i=a

qi
r3i

ri (3)

L2 = kcq1

cX

i=a

qi
r3i

r2,i ⇥ ri (4)
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Figure 3. Normalized torque surface and corresponding error at a separation dis-
tance of d = 15 m for V1 = �30 kV and V2 = 30 kV .

where ˆr is the unit direction from the commanding spacecraft mass center to the tumbling body
mass center. The orientation dependency function assumes the form in Eq. (11).

g(�) = sin(2�) (11)

The projection angle orientation dependency form captures the behavior previously studied by Ref-
erence 5 for the 1-D case. For example, if the pitch angle were zero, the projection angle would
be the rotation angle ✓ and the control collapses to the 1-D form. Implementation of the projection
angle formulation captures the torque surface in Figure 3 with a correlation of R

2
= 0.9998 when

separated at d = 15 m. The MSM predicted torque surface is sensitive to separation distance, and
the fit quality provided by Eq. (11) decreases rapidly as the separation distance diminishes. The
sensitivity to separation distance is shown in Figure 4 where the MSM predicted torque is shown
for a separation distance of d = 15m and d = 2 m respectively. The change in torque surface
character is clearly visible in Figure 4 where the torques for the d = 15 m separation and d = 2.5

m separation distances are shown respectively. Evident in Figure 4, the torque surface deforms in
both profile at a fixed potential and the torque strength between the positive and negative potentials
as the separation distance is varied. To capture the variation in character, a more general orientation
dependency function is required.

Generalization of Orientation Dependency Function

The quality of the fit degrades as the separation distance decreases due to the induced charging
effects predicted by MSM but not by the analytic approximation in Eq. (8). The analytic form is
extended to

L = f (�)

nX

m=1

�

m

g

m

(�) (12)

where n is the number of terms in the desired approximation and �

m

is the coefficient of the m

th

term. The separable form, used to avoid matrix inversion of the MSM model, allows the summa-
tion of an infinite number of representative approximation functions to be used in equilibrium and

6
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Figure 3. Normalized torque surface and corresponding error at a separation dis-
tance of d = 15 m for V1 = �30 kV and V2 = 30 kV .

where ˆr is the unit direction from the commanding spacecraft mass center to the tumbling body
mass center. The orientation dependency function assumes the form in Eq. (11).

g(�) = sin(2�) (11)

The projection angle orientation dependency form captures the behavior previously studied by Ref-
erence 5 for the 1-D case. For example, if the pitch angle were zero, the projection angle would
be the rotation angle ✓ and the control collapses to the 1-D form. Implementation of the projection
angle formulation captures the torque surface in Figure 3 with a correlation of R
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separated at d = 15 m. The MSM predicted torque surface is sensitive to separation distance, and
the fit quality provided by Eq. (11) decreases rapidly as the separation distance diminishes. The
sensitivity to separation distance is shown in Figure 4 where the MSM predicted torque is shown
for a separation distance of d = 15m and d = 2 m respectively. The change in torque surface
character is clearly visible in Figure 4 where the torques for the d = 15 m separation and d = 2.5

m separation distances are shown respectively. Evident in Figure 4, the torque surface deforms in
both profile at a fixed potential and the torque strength between the positive and negative potentials
as the separation distance is varied. To capture the variation in character, a more general orientation
dependency function is required.
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effects predicted by MSM but not by the analytic approximation in Eq. (8). The analytic form is
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Figure 6. Numerical simulation with initial conditions: |!| = 0.2, d = 15 m, �0 =

45

�, with Vmax = 20 kV .

positive potential due to slight oscillation in the angular velocities that continues to drive the pro-
jection angle to the torque free attitude. The decreasing magnitude of the command potential is
not discernible in Figure 7(a), however the magnitude goes to zero as the projection angle goes
to zero. The initial angular velocity presented is not large in magnitude, however it is large given
the small commanding spacecraft dimensions and large separation distance. The presented control
formulation seeks to arrest only the projection angle rate. Inclusion of a coast phase or spacecraft
reorientation could achieve the desired projection angle after the projection angle rate is zero. The
numerical simulations presented in Figure 6 and Figure 7 demonstrate the control implementation
for three dimensional electrostatic detumble that can remove angular momentum from large orbital
objects within days.

CONCLUSION

The rate-based electrostatic attitude control is investigated for the three-dimensional tumbling
motion of a representative cylindrical body. The electrostatic control authority at separation dis-
tances on the order of 3-4 craft radii demonstrates that the tumbling rotational motion is greatly
reduced. More rapid detumble is possible with reduced separation distance. The control scheme
utilizes a general approximation of the multi-sphere modeling method to verify closed-loop stabil-
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(a) Nominal Tugging
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+
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(b) Nominal Pushing

Figure 4. Equilibrium attitudes for nominal tugging and pushing potentials in deep space.

f(�1) = � �

sin(�)

� sgn (gm(�)) h(↵ ˙

�) (17)

The leading term in Eq. (17) represents the nominal potential prescribed for electrostatic pushing
and pulling. Therefore the � feed-forward gain is defined as

� = �f(�nom) sin(�) (18)

Substituting the resulting new potential of Eq. (17) with defined � into the expression in Eq. (16)
provides the final form for the Lyapunov derivative.

˙V (�, ˙

�) =

h
�� � sgn (gm(�)) h(↵ ˙

�) sin(�) + �
i
gm(�)

˙

� (19a)

= �sgn (gm(�)) gm(�) sin(�)h(↵ ˙

�)

˙

� (19b)

which is shown to be negative semi-definite by Reference 22 around � = 0 and provides asymptotic
stability with additional invariant set arguments. Given a nominal pushing or pulling electrostatic
potential, the control form presented provides asymptotic convergence to a nulled projection angle
rate. Using a projection angle form, the nominal equilibrium projection angles from the analysis
in Reference 8 apply. Inclusion of a attractive nominal potential, the cylinder rests at a projection
angle of zero. Inclusion of a repulsive nominal potential rests the cylinder at a projection angle of
90

�. However, given that the projection angle describes a 3-dimensional attitude the interpretation
of the equilibrium angle is different than previous studies. A projection angle of zero, that of the
nominal tugging case, is unambiguous and refers to a perfect alignment between the slender axis of
the cylinder and the relative position vector. A projection angle of � = 90

� provides an infinite set
of attitudes as the projection angle only defines an admissible plane for the slender axis to reside
within. Therefore, any combination of body attitudes and angular rates that restricts the slender
axis to the plane for all time is admissible as an equilibrium state with nominal repulsive force. This
3-dimensional definition of the projection angle fully encapsulates previous results and is applicable
to more a general tumble of a debris cylinder.

7

Tugging Configuration Pushing Configuration
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Debris Orbit

Tumble Axis

Electrostatic Force

Figure 2. Relative motion of servicer spacecraft around tumbling debris object.

In the relative position shown on either side of Figure 2 shows where minimal or zero differential
torque is generated. Earlier work explores Coulomb formation flying and tug trajectories.23, 24 In
contrast, this work addresses relative motion applied to detumble of the debris object. This work
expands the prior analysis to consider natural relative orbital motion and the stability of nominal
attractive or repulsive electrostatic tractor present while the detumble is performed. Several ap-
proaches using Coulomb and Lorentz force have been studied to utilize the electrostatic effects for
satellite formation flying.25, 26, 27 However, this work addresses the advantages of relative orbits on
detumble performance.

Upper stage rocket bodies form a large component of GEO debris, justifying the assumption of a
cylindrical debris shape for the scope of this paper. Of interest is how torque equilibriums impact the
convergence of the general tumbling scenario, the stability of such equilibria, and the development
of a general detumble and relative motion control algorithm. The following sections detail the
Multi-Sphere Method and the previously developed attitude description. The paper concludes with
the work in progress.

MULTI-SPHERE METHOD

The Multi-Sphere Method (MSM) represents the complete spacecraft electrostatic charging model
as a collection of spherical conductors carefully dispersed through the body.12 The cylinder con-
figuration representative of the above mentioned rocket bodies and defunct spacecraft is detailed in
Figure 3. The 3-sphere MSM approximation provides sufficient force and torque accuracy for the
separation distances considered.20

The modeled configuration parameters are the separation distance d, the cylinder rotation about
the inertial z axis ✓, the pitch angle defined from the inertial x-y plane  , and the control voltages
�1 and �2. The inertial coordinate system is fixed to the controlled spherical spacecraft with the z

3
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Inertial Relative Motion in Orbit
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Figure 7. Angular momentum with initial conditions: ! = [0.5, �1.374, 1.374],
�0 = 30

� comparing both deep space (left column) and on orbit (right column).

Additional insight is gained by the inspection of the body frame angular velocities and the inertial
angular momentum vector both shown in Figure 7. Clearly visible in Figure 7(a) is the constant
slender axis rotation around ˆb1 and the convergence to angular velocity oscillation between !2

and !3 while in deep space. The steady-state angular velocities in the presented deep space case
are a degenerate case of Eq. 26. The deep space case has a fixed inertial ˆr which provides an
opportunity for the final coning motion of the debris object to satisfy the bracketed term in Eq. 26
with nonzero transverse angular velocities. Further, with the inertially fixed ˆr the Hkr magnitude
remains unaffected. Figure 7(c) shows the inertial HY component unchanged where the other two
components are driven to zero. The combination of a coning angle and the unchanged parallel
angular momentum component produces ⌘ss 6= 0 and an incomplete angular momentum reduction.

Comparison of the detumble performance reveals that the on orbit motion provides additional
momentum dumping using nearly equivalent time as in deep space. The relative motion suggests
greater momentum observability by the control torque leading to more effective momentum removal
with greatest evidence in the angular velocity reduction in Figure 7(b). As expected, the body frame
angular velocities for the on orbit case are reduced to nearly zero where the slender axis !1 remains
unaffected. The inertial angular momentum time history in Figure 7(d) provides additional sup-
port for a more complete debris detumble. Comparision to Figure 7(c) reveals that all three inertial

12
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• Monte-Carlo Capability 
• Speeds up to 700-1000x 
• Software Realtime Mode 
• ISC Open Source License
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Python Simulation Scenario Scripts

Swig Python Interface Layer
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Simulation 
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Modules
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ANSI-C 
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MPI
Qt/OpenGL Realtime 

Visualization

TCP/IP
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Sample Spacecraft Simulation Setup

Spacecraft Simulation 

RW 1

RW 2

RW 3

RW 4

EOM 

- flexible panel 
- fuel slosh 
- RW jitter 
- Gravity harmonics 
- N-body gravity 
- SRP via OpenGL

TH 1 TH 2 TH 3 TH 4

TH 5 TH 6 TH 7 TH 8

ACS Thrusters

TH 1 TH 2

TH 3 TH 4

DV Thrusters

cmds

cmds

cmds

Star 
Tracker

Accelero
meter

Rate 
Gyro

Star 
Tracker

Magneto
meter

CSS CSS CSS CSS

CSS CSS CSS CSS

Communication Layer

The C++ device 
modules can 
easily be added  
and connected 
with the the 
simulation.
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Sample FSW Algorithm Setup

FSW Algorithms 
Sun Heading 

Estimator
CSS com

Ephemeris

Attitude 
Estimator

IRU com

ST com

Guidance

Attitude Error Control Torque

LowPass Filter

Deadband

ACS Thruster

cmd com

The ADCS algorithms are written in a modular format in C what allows 
the data to flow between them.  This allows for the base modules to 
be interconnected to create complex control behaviors.



GPU Based Solar Radiation Pressure Modeling AVS
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A basic SRP model evaluates the 
force transmitted to the spacecraft 
due to impacting photons. 
A truly high-fidelity model would 
implement an electromagnetic 
energy balance. 

• Evaluation of an increased fidelity 
geometry allows us to: 

• Leverage existing techniques present in 

computer graphics tools such as 
OpenGL to calculate the total SRP 
energy balance across a detailed CAD 
model.


• The evaluation is an easily 
parallelized operation allowing use 
of the highly parallel processing 
capabilities of modern GPU.

• Current high-end GPU’s perform 10E12 

floating point operations per second.

• Perfomance goal: 1year mission in 1day

Shaders are ‘mini-programs’ that run on the GPU as part of the OpenGL 
pipeline.  Operate on each per-vertex/shape primitive

What Shaders do:

Single Face Lighting Multi Vertex Lighting Vertex Interpolation Resolving Textures

Using the OpenGL shader pipeline one can develop an 
algorithm which accounts for: 

• Including spacecraft material properties assigned to 
the CAD model   

• Material absorption and re-radiation at other location 
of the spacecraft

Prof. Hanspeter Schaub and Patrick Kenneally (Phd GRA)
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ŝi,1
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Figure 1. Components, variables and coordinate frames used for this derivation.

function that is useful in determining the stability and frequency response due to different inputs.
However, it neglects the cross coupling affect on the other rotational axes, and the effect on trans-
lational motion. This method is helpful in the early stages of a mission, but lacks fidelity and is
limited in its application.

In contrast, the field of multi-body dynamics has extensive research on modeling flexible dynam-
ics and the equations of motion presented are generalized for complex and diverse problems. This
results in requiring derivation of equations because of generality.2–4 These methods are required for
unique and complex systems because the equations of motion depend on how many joints that are
interconnected. For example, in robotic systems, the number of interconnected joints varies widely,
and the equations of motion are specific to that system.5, 6 Since there are many spacecraft that have
similar designs with appended solar panels, there is a need to develop equations of motion that could
be applied to these spacecraft.

Similar to this paper, multiple publications present models of spacecraft dynamics with appended
solar panels.7–9 However, this previous research is mainly focused on the deployment of solar panels
and how the deployment affects the dynamics of the spacecraft.7–9 Also, the previous research on
deployable solar panels are specific to solar panels that are composed of interconnected bodies. This
paper considers systems where the solar panels are single rigid bodies.

This paper introduces a method of modeling the flexible dynamics of the solar panels by assuming
that the hub of the spacecraft and the solar panels are rigid bodies, but the solar panels are connected
to the hub by single degree-of-freedom torsional springs. The torsional spring constants could be
attenuated to match the natural frequencies of the solar panels which could be found from Finite
Element Analysis or testing. This method in modeling the flexible dynamics is a first order model,
and other effects like bending and torsional bending could be added later. However, in contrast to
earlier work, the multi-body system is allowed to undergo general three-dimensional motions in
translation and rotation.

PROBLEM STATEMENT

The purpose of this paper is to develop equations of motion describing flexible dynamics of a
spacecraft that can be smoothly integrated into computer simulation. It will reduce the need of
deriving equations of motion for new missions. This formulation is completed in a general way that

2

The simplified “lumped parameter” method of modeling RW jitter is inaccurate due to the nonconservative nature
of adding a system-internal forcing effect as an external disturbance.11 Since angular momentum is not conserved
in this model, a time varying bias in angular velocity is observed. The magnitude of the bias is dependent on the
relative magnitude of the spacecraft inertia versus the reaction wheel imbalance and the wheel speed. For analysis
purposes this does not necessarily present a problem. The overall effect of the angular velocity bias is quite small for
spacecraft that have small wheel imbalance to spacecraft inertia ratios and the amplitude of RW induced jitter may be
computed by subtracting a polynomial fit of appropriate order from the resulting angular velocity. For spacecraft with
poorly balanced reaction wheels or small wheel mass/imbalance to spacecraft inertia ratios this approach may become
problematic. Additionally, it is undesirable to run this model in a simulation involving pointing accuracy assessment,
power assessment, flexible structures, propellant slosh, etc. due to momentum and energy validation being unavailable.

This paper presents a general derivation of equations of motion for a spacecraft with N imbalanced reaction wheels.
A Newtonian/Eulerian formulation approach is employed. Special consideration is given to the computational speed
of the solution. To avoid inverting a large system mass matrix, the equations of motion are written such that rigid
body and RW jitter modes can be solved for sequentially. This provides an elegant analytical one-way decoupling
of the equations of motion using a minimal coordinate set, and avoids the kinematic complexities of general N -th
order solution such as in Reference 12. Since the spacecraft hub is considered to be rigid, flexible dynamics are
not considered. The body of the paper gives detail on the mathematical model, numerical simulation, and draws
conclusions on the results.

II Problem Statement

An offset in the center of mass of the RW from the spin axis, denoted static imbalance, results in an internal force
on the spacecraft. Asymmetric distribution of mass about the RW spin axis, denoted dynamic imbalance, produces an
internal torque on the spacecraft. Figure 1 explains these imbalances geometrically. Ip is a line that is coincident with
the center mass of the RW and defines a principal axis of the RW. The static imbalance results in a center of mass offset
of the RW but does not change the direction of the principal axes. The dynamic imbalance is result of the principal
axes not being aligned with the spin axis. Deflection of the RW wheel bearing due to static and dynamic imbalances
further affects the vibrational modes of the system, however, this effect is beyond the scope of this work and is not
being considered.

ˆgs

Ip

Static Imbalance

Dynamic Imbalance

Figure 1: Reaction wheel static and dynamic imbalance.

When deriving the equations of motion (EOMs) for a spacecraft with N reaction wheels, an important assumption
is made that the reaction wheels are symmetric and results in the EOMs to be simplified to a convenient and compact
form.11 However, if the reaction wheels are imbalanced the EOMs have to be re-derived to account for the fully-
coupled dynamics between the RWs and the spacecraft. This paper follows a development path using Newtonian and
Eulerian mechanics using a formulation that uses a minimal coordinate description.11

Figure 2 shows the frame and variable definitions used for this problem. The formulation involves a rigid hub
with its center of mass location labeled as point Bc, and N RWs with their center of mass locations labeled as Wci .
The frames being used for this formulation are the body frame, B : {ˆb1, ˆb2, ˆb3}, the motor frame of the ith RW,
Mi : { ˆmsi , ˆm2i , ˆm3i}, and the wheel frame of the ith RW, Wi : {ˆgsi , ˆw2i , ˆw3i}. The dynamics are modeled with
respect to the B frame which can be oriented in any direction. The Wi frame is oriented such that the ˆgsi axis is
aligned with the spin axis of the RW, the ˆw2i axis is perpendicular to ˆgsi and points to Wci . The ˆw3i completes
the right hand rule. The Mi frame is defined as being equal to the Wi frame at the beginning of the simulation and
therefore the Wi and Mi frames are offset by an angle, ✓i, about the ˆmsi =

ˆgsi axes. These are the necessary frame
and variable definitions needed for this formulation.
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Start/End

a) Nominal Rasters vs. Achieved Maneuver for ↵ = 8 deg. b) Achieved 3D Bore-sight Pointing for ↵ = 24 deg.

Figure 18: Achieved Asterisk Scanning Pattern.

Figure 18(b) shows the three-dimensional view of the spacecraft’s bore-sight pointing. Cartesian coordinates of the
bore-sight pointing are represented in an analogous scanning maneuver of nominal angle ↵ = 24 degrees. The single
blue dot corresponds to the position of the spacecraft, from which a scanning pattern is projected on a unit sphere.

VIII Conclusions
A novel reference generation architecture is presented where complex guidance is achieved through a set of atomic

reference frame behaviors. A fundamental aspect is that the proposed guidance scheme is developed in a completely
general way. Mission-specific needs can then be met by arranging the existing software in a reliable and systematical
manner. Two types of generated references are distinguished. First, the base reference frame is generated using,
if necessary, the satellite’s orbit information. Next, dynamic reference frame behaviors are super-imposed to yield
spinning or scanning maneuvers relative to the base reference frame. Alternate body-fixed frame alignments are
accounted for during the tracking error computation. A key advantage of this approach is that each reference frame
generation module can be tested and verified individually. This simplifies the overall ADCS validation approach
as complex guidance functionality is achieved through combination of tested core modules. Numerical simulations
validate that the generated reference motion exhibits the expected performance, and the associated feedforward control
terms allow the spacecraft to asymptotically converge onto the reference motion.
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atomic behavior modules.

guidance chain, a Message Passing Interface (MPI) is used to flow the output data from one module into the next.
This makes it simple to replace a module in the reference guidance stack with another to change the overall guidance
behavior.

Encapsulating the guidance functionalities in completely independent modules instead of monolithic algorithms is
a key aspect in terms of software safety. There have been several instances of critical anomalies arising in complex
software due to unexpected behavior of commercial off-the-shelf software.10 With the aim of bringing down mission
risks, the suggested staging of independent guidance modules allows scaling up the functionality in a safe and system-
atic manner. Complexity is built through layers of atomic modules and the decoupling between these units simplifies
the verification/validation process because they can be individually tested and analyzed.

The paper is outlined as follows. First, the guidance generation and control setup used throughout the paper are
reviewed. An overview of the Basilisk astrodynamics simulation software is presented upon which the proposed
guidance solutions are implemented. Then the base reference modes are discussed including inertial pointing, Hill
frame pointing, velocity orbit pointing as well as a novel constrained two-body pointing scheme. In the two-body
pointing guidance generation, the spacecraft must direct an axis towards a planetary body while pointing a second axis
as best as possible at another celestial body. For example, consider pointing a high-gain antenna aligned precisely
back at Earth, while rotating the craft to point the solar panel normal as best as possible at the sun. Next the dynamic
guidance modes are discussed, which consider spinning about a fixed axis and performing a constant Euler rates
maneuver relative to the base reference frame. After developing the underlying mathematics of each module, numerical
simulations illustrate the staging strategy to achieve increasingly complex scenarios.

II Problem Statement
II.A Attitude Guidance Behavior

The goal of the GN&C process is to drive a body-fixed frame from its current state B, as estimated by the navigation
system, to a final desired reference frame R. Within this process, the guidance block is responsible for generating the
desired reference R and computing the attitude error between the current and desired states.

The computed reference state R is, in this paper, composed of three parameters: an inertial attitude measure,
denoted through the Modified Rodrigues Parameters (MRP) set �R/N ,8, 13, 14 an inertial angular rate vector N!R/N

expressed in inertial frame N components, and an inertial angular acceleration vector N
˙!R/N also in N -frame com-

ponents. The left-superscript denotes the frame with respect to which the vector components are taken.
This paper assumes a 3-axes attitude control scenario. This assumption is critical when adding base and dynamic

reference frame behaviors. Excluded from this scenario are 2-axes attitude control problems where only a single body
vector has to be aligned with a reference vector. This is commonly the case of safe-mode sun-pointing operations.

Pointing Base Reference

Dynamic Reference 1

Tracking Error

Dynamic Reference 2

R0 : {�R0/N , N!R0/N , N
˙!R0/N}

R : {�R/N , N!R/N , N
˙!R/N}

R1 : {�R1/N , N!R1/N , N
˙!R1/N}

�
�B/N

B!B/N

�
⌘ Navigation Data

2

664

�B/R
B!B/R
B!R/N
B

˙!R/N

3

775 ⌘ Guidance Output

Attitude O�set

Figure 3: Illustration of the Inputs and Outputs of a Sample Multi-Reference Guidance Chain.
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a) Base reference MRP �R0/N . b) 3-2-1 Euler set ✓R0/R. c) Desired reference MRP �R/N .

Figure 14: Generated Attitude Sets.

a) Attitude tracking error �B/R. b) Rate tracking error !B/R. c) Applied control torque u.

Figure 15: Tracking Errors and Control Torque.

in Fig. 15(c) is capped to a maximum RW torque of 0.2 N·m. Note that ui correspond to the torque of each reaction
wheel. It is shown that saturation only takes place at the very beginning of the maneuver. Performing a nadir axis
spinning is an unnatural, i.e. non-equilibrium, motion. Hence, it is expected that the reference torques do not converge
to zero.

VII.C Raster Maneuver
The second simulation performs a scanning maneuver to achieve an asterisk pattern across an inertial reference

like the one illustrated in Fig. 10(b). The guidance stack for the multi-raster scanning motion is depicted in Fig. 16.
Note that in this simulation, a raster manager module is attached to the Euler rotation module. The raster manager
commands a sequence of Euler angle offsets and rates at the configured raster times. Each raster lasts for 1600 seconds
(⇡ 0.45 hours). The resulting complex reference motion is generated using only a total of N = 4 raster commands.
Additionally, the spacecraft is smoothly driven back to the starting scanning point.
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Figure 16: Inertial Scanning Stack.
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Figure 1. Illustration of Coordinate Frame Definitions

arguing that each loop individually is stable. In the field of spacecraft attitude control the use of
steering laws is common when employing single-axis Control Moment Gyroscopes (CMGs). Here
the control solution is written in terms of the gimble rates, not in terms of gimbal axis torques.13–18

An inner control loop is assumed to track the desired gimble rate trajectory.

This paper investigates creating kinematic steering laws to achieve novel three-axis attitude con-
trol laws. Lyapunov’s direct method is employed on the kinematic differential equation to establish
necessary outer loop stability conditions. Specific implementations using the MRPs and the Princi-
ple Rotation Vector (PRV) components are developed that enforce pre-specified spacecraft rotational
speed limits on the nominal closed loop control. Next, a spacecraft angular velocity vector based
closed loop servo control is investigated for the inner speed servo loop. Robustness modifications
using integral terms are considered to reject unmodeled external torques. Further

PROBLEM STATEMENT

The kinematic control law is developed for a rigid spacecraft whose orientation is controlled
through a cluster of N Reaction Wheels (RWs) as illustrated in Figure 1. The control goal is to
drive a body-fixed frame B : {b̂1, b̂2, b̂3} towards a time varying reference frame R : {r̂1, r̂2, r̂3}
as illustrated. The inertial frame is given by N : {n̂1, n̂2, n̂3}. The RW coordinate frame is given
by Wi : {ĝsi , ĝti , ĝgi}. Here ĝsi is a unique positive spin axis unit direction vector, while the other
two axes complete a right-handed coordinate frame. Using MRPs at the attitude error measure, the
overall control goal is �B/R ! 0. The reference frame orientation �R/N , angular velocity !R/N
and inertial angular acceleration !̇R/N are assumed to be known.

The rotational equations of motion of a rigid spacecraft with N RWs attached are given by8

[IRW]!̇ = �[!̃] ([IRW]! + [Gs]hs) � [Gs]us + L (1)

where us is the set of RW motor torque, L is an external torque, and the inertia tensor [IRW ] is
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Next, let us investigate the closed loop performance. For small errors, assuming a perfect rate-
servo sub-system, the closed loop dynamics is given in Eq. (16). Using the MRP differential kine-
matic equation approximation �̇ = !/4, this is rewritten as the first order differential equation

�̇B⇤/R = �K1

4
�B⇤/R (21)
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On-Going Basilisk Efforts

• Make the software framework for an open-source 
alpha release by December 2016


• Enhance dynamics to include

• Fully coupled imbalanced RW, CMG and VSCMG 

• Atmospheric drag models, including GPU-based 

evaluation of a CAD model

• SRP and drag with flexible shapes

• Adding a range of leading atmospheric neutral density 

and wind models

• Adding a very general depletable mass model

• Adding magnetic field models

• Adding MSM modeling


• Enhancing the Visualization components


• Adding Hardware in the loop capabilities
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Conclusions

• Electrostatic Forces show promise to 
control the relative orientation of a 
passive GEO objects


• Only 10’s of Watts of electrical power is  
required to detumble an upper stage  
from 2˚/s to zero over about a week


• The open-source Basilisk project enables 
highly reusable dynamics and flight 
software algorithm components


• The novel simulation architectures 
included cutting-edge GPU accelerations 
of SRP and drag evaluations.
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Questions?
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