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SPACECRAFT ELECTROSTATIC FORCE AND TORQUE
EXPANSIONS YIELDING APPROPRIATE FIDELITY MEASURES

Joseph Hughes∗ and Hanspeter Schaub†

Charged spacecraft experience electrostatic forces and torques from both charged
neighboring spacecraft and the local space environment. These forces and torques
can be used for a variety of novel touchless actuation concepts. In contrast to the
multipole method which provides an expansion of the potential field, this paper
presents a direct binomial series expansion of the forces and torques called the
Appropriate Fidelity Measures (AFMs) method. A two-stage process is presented
where first the force and torque vectors are expanded assuming a known charge
distribution, followed by a second stage which provides an approximation of the
charge distribution through the susceptibilities of the measures. AFMs provide
a direct analytical solution and thus provide new insight for charged single- and
two-body configurations. The accuracy of a truncated expansion is numerically
studied and validated. With a second-order AFM solution, the errors drop below
5% at separations greater than∼ 6 craft diameters. This new method is well-suited
for control analysis due to the analytical solutions produced. An AFM solution
of the torque on a axis-symmetric cylinder is developed that yields closed form
analytic solutions that match prior numerically fit solutions.

INTRODUCTION

In the Geosynchronous Earth Orbit (GEO) regime, satellites charge to very high voltages on the
order of tens of kiloVolts [1]. This charging causes small forces and torques on the body due to
interactions with Earth’s magnetic field. This can change the orbits of uncontrolled lightweight
debris objects [2, 3, 4]. If nearby spacecraft use active charging such as through electron and ion
guns, larger forces and torques are felt between the crafts. This enables novel Coulomb formation
flying missions [5, 6, 7, 8, 9]. Electrostatic forces are also being studied for touchless re-orbiting
of GEO debris to a graveyard orbit in a matter of months using the Electrostatic Tractor (ET) [10].
The ET concept directs the charge emission of the servicer or tug at the debris object to yield an
attractive inter-spacecraft force. If a spacecraft has a non-spherical shape, it may also experience
torques which can be harnessed for touchless de-spin before servicing or grappling [11, 12, 13].

There are many separate challenges to electrostatic actuation such as prescribing the appropriate
electron and/or ion beam current and voltage, sensing the voltage, position, and attitude of a pas-
sive space object, and designing control laws that perform well for either tugging or de-spinning.
This paper addresses the challenge of analytically predicting the force and torque vectors on each
spacecraft given the voltages of each craft, and their relative position and attitude. This is important
to perform dynamic stability and control analysis, as well as implement robust feedback control
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solutions. For example, Reference [14] illustrates how an under-prediction of the nominal ET force
can lead to an unstable bifurcation in the closed loop dynamics.

The problem of two charged conductors interacting through electrostatics is similar to that of two
bodies interacting gravitationally. The differential force in both cases is proportional to the prod-
uct of either the masses or charges, and inversely proportional to the square of the distance between
them. The gravitational problem can be readily solved using conic sections if both bodies are treated
as point masses. For added fidelity, the larger body is treated as a general shape through the use of a
spherical harmonic expansion. If both bodies are near the same size and very close, they must both
be treated in a general manner solving the full gravitational two-body problem. This problem can be
solved using a range of methods including expansions of mass distribution through MacCullagh’s
approximation [15], inertia integrals [16] or numerically using a lumped-mass approach [17]. In the
electrostatic problem, there is also an added complication: the total mass and its distribution is fixed
in a rigid body while the total charge and associated charge distribution change easily within a con-
ductor. As the two conductors rotate and translate, the charge distribution changes and impacts the
electrostatic forces and torques. For example, consider to negatively charged objects approaching
each other. The electrons will repel each other and gather on the far sides of the objects, caus-
ing a differential charge distribution. In contrast, as two asteroids approach each other their mass
distribution remain unchanged.

Many methods exist to solve the electrostatic problem numerically, and they all begin with pre-
diction of the charge distribution. This can be done using full FEA software which is very accurate
but much too slow for dynamics simulations, or more coarse methods like the Method of Moments
[18]. Once the charge distribution is known, the total Coulomb force can be found by summing the
force between every facet in one body and every facet in the other body. A new method for force and
torque prediction is the Multi-Sphere Method (MSM) [19], which places spheres of tunable radii
and position throughout the conductor. This process divides into Surface MSM (SMSM), which
was optimized for large numbers of spheres constrained to be on the surface of the conductor by
Stevenson et. al. in [20] and Volume MSM (VMSM), which uses a small number of spheres with
unconstrained positions and was optimized by Chow et. al. in [21, 19]. While these methods offer
an excellent trade study between accuracy and speed, all are numerical and do not enable closed-
form analysis. Analytical insight is instrumental in any dynamics and stability studies, such as for
the de-spin and ET concept.

Analytical formula for the electrostatic two-body problem are found for the special case of two
conducting spheres using the Method of Images [22, 23, 24]. If the bodies are not spherical, the
multipole expansion method can be used to find the electric potential in the vicinity of a charge
distribution by expanding the charge distribution in powers of 1/R [23]. The potential energy of
two charged molecules can also be found and differentiated with respect to position attitude to find
force and torque [25]. These expansions use terms similar to the inertia integrals used by Hou
[16]. The conference paper cited in Reference [26] introduces a similar method for finding the
electrostatic force and torque between two charged spacecraft, but differs in that it does not find
the potential but finds the force and torque directly. This method for predicting force and torque
is called the Appropriate Fidelity Measures (AFM) method, named for the measures of the charge
distribution that appear due to the appropriate fidelity truncation of the binomial series.

Reference [26] illustrates an early form of the AFM concept and investigates some special cases
of an isolated body in a flat or radial field, but doesn’t develop the full two body AFM theory. Flat
field analysis was furthered for the special case of a High Area-to-Mass Ratio (HAMR) object’s
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orbit being perturbed by Earth’s magnetic field in Reference [2]. This paper provides the first
comprehensive theory of AFMs for general spacecraft applications, including the general case of
two interacting charged bodies, and shows how the radial field is a special case of the general two
body problem. Providing a general formulation enables developing any particular AFM models
that consider the local environmental electric and magnetic fields, as well as electric fields due to
arbitrary neighboring charged spacecraft. This work differs from the multipole expansion cited in
Reference [25] in that this work also presents a method for predicting the moments of the charge
distribution from the voltage and attitude of each craft as well as their separation.

The general AFM formulation is developed by first investigating the field integrals over both
bodies of general shape. These integrals are approximated using a binomial series which is truncated
at the point corresponding to appropriate fidelity for the scenario. Three key moments of the charge
distribution appear when solving these integrals, which allow for compact representation of the force
and torque. The second step is to predict these moments from parameters more easily accessed in
situ such as the voltage of each craft, the relative attitude of the crafts, and their separation. In the
case of an isolated object the ambient magnetic and electric fields are used along with the object’s
voltage. The charge distribution is evaluated for general shapes, potentials and external magnetic
fields by studying the susceptibilities of the measures. The goal of this process is to analytically
determine AFM expansion coefficients for a given object shape and potential. Next the numerical
accuracy of this method is found using SMSM as a truth model. Lastly, the use of analytical AFMs is
illustrated in a novel electrostatic analysis to investigate the general torque expression of a cylinder-
sphere system with a variable center of mass.

PROBLEM STATEMENT

This section establishes the notation and variables used in this paper, as well as the fundamental
charging and force models employed and the key binomial expansion used. Consider two charged,
conducting neighboring spacecraft as is shown in Figure 1 with a known charge distribution. This
later assumption is relaxed later in the development to assume that only the potentials and relative
attitude and separation are known. They each experience a force and torque due to the other’s
charge. The force and torque on body 2 is found by integrating the differential force, which is a
function of body 1’s charge distribution, across body 2.

dF2 =
dq1dq2R
4πε0R3

(1)

whereR points from dq1 to dq2. The separation vector is expressed from body vectors and a vector
between the center of mass of each body R = Rc + r2 − r1. Using this substitution makes the
differential force

dF2 =
dq1 dq2 Rc + r2 − r1
4πε0 ||Rc + r2 − r1||3

(2)

Where ε0 is the permittivity of free space, ε0 ≈ 8.854187 ∗ 10−12 F/m. The differential force is
approximated by binomially expanding the denominator and truncating higher-order terms on the
assumption that the body radii (r1 and r2) are small compared to their separation (Rc).

1

||Rc + r2 − r1||3
= (R2

c + r21 + r22 + 2(Rc · r2 −Rc · r1 − r2 · r1))−3/2 (3)

=
1

R3
c

[
1 +

(
r22
R2

c

+
r21
R2

c

+
2

R2
c

(Rc · r2 −Rc · r1 − r2 · r1)
)]−3/2

(4)
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Figure 1. Coordinate system for inter-craft derivation

Expand the denominator to second order using a binomial series (1+ x)−3/2 ≈ 1− 3
2x+

15
8 x

2 and
reassemble to approximate the differential force as:

dF2 =
dq1 dq2
4πε0R3

c

(Rc + r2 − r1)
(
1− 3r21

2R2
c

− 3r22
2R2

c

− 3(Rc · r2 −Rc · r1 − r2 · r1)
R2

c

+

15((Rc · r2)2 + (Rc · r1)2 − (Rc · r1)(Rc · r2))
2R4

c

)
(5)

This differential is integrated over the entire body to obtain the net electrostatic force on this object,
or crossed with the body position vector and integrated over the body to obtain torque.

APPROPRIATE FIDELITY MEASURES

Fundamental AFM Expansion Terms Definition

The problem of two charged bodies interacting through electrostatics is similar to two massive
bodies interacting through gravity. Just as moments of the mass distribution play a key role in
solving the gravitational two-body problem [16], moments of the charge distribution play a key
role in predicting electrostatic force and torque. Three especially important moments of the charge
distribution are identified and named here:

Q =

∫
B

dq q =

∫
B
r dq [Q] =

∫
B
−[r̃][r̃] dq (6)

Q is a scalar and is the total charge, q is a 3 × 1 vector and is defined as the dipole moment, and
[Q] is a 3 × 3 tensor defined as the charge tensor. The vector r points from the center of mass to
the differential charge dq, and [r̃] is the matrix form of the vector cross product: a × b = [ã]b. If
the gravity analogy is used, the total charge Q is similar to the total mass, the dipole moment q is
similar to the total mass multiplied by the offset between the center of a coordinate system and the
true center of mass, and the charge tensor [Q] is similar to the inertia tensor. The dipole moment
q provides a measure of where the center of charge is in relation to the center of mass. If q is
zero, then the center of charge and mass locations are identical. To relate these AFM terms to the
variables commonly used in multipole expansions, Q and q are the mono and dipole terms, and the
charge tensor [Q] defined here is related to the quadrupole [Qp] by [Qp] = −3[Q] + 2tr([Q]) [23].
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Inter-Craft Electrostatic Reactions

This section derives the force and torque on body 2 due the charge on body 1 and 2. This is done
using the 2nd order binomial expansion for the denominator of the differential force.

Force Derivation The total force on body 2 is found by integrating the differential force over the
entire body

F2 =
1

4πε0R3
c

∫
B1

∫
B2

(Rc + r2 − r1)
(
1− 3r21

2R2
c

− 3r22
2R2

c

− 3(Rc · r2 −Rc · r1 − r2 · r1)
R2

c

+

15((Rc · r2)2 + (Rc · r1)2 − (Rc · r1)(Rc · r2))
2R4

c

)
dq2dq1 (7)

This equation is broken into three parts: the terms resulting from the Rc, r1, and r2 which are
denotes as F20 ,F21 and F22 , respectively. The first term F20 is expressed as

F20 =
Rc

4πε0R3
c

∫
B1

∫
B2

(
1− 3r21

2R2
c

− 3r22
2R2

c

− 3(Rc · r2 −Rc · r1 − r2 · r1)
R2

c

+

15((Rc · r2)2 + (Rc · r1)2 − (Rc · r1)(Rc · r2))
2R4

c

)
dq2dq1

=
Rc

4πε0R3
c

[
Q1Q2 −

(
3

2R2
c

∫
B1

r21 dq1

∫
B2

dq2

)
−
(

3

2R2
c

∫
B2

r22 dq2

∫
B1

dq1

)
−
(

3

R2
c

Rc ·
∫
B1

dq1

∫
B2

r2dq2

)
+

(
3

R2
c

Rc ·
∫
B2

dq2

∫
B1

r1dq1

)
+

(
3

R2
c

∫
B1

r1dq2

∫
B2

r2dq2

)
+

(
15

2R4
c

∫
B1

dq1

∫
B2

(Rc · r2)2dq2

)
+

(
15

2R4
c

∫
B2

dq2

∫
B1

(Rc · r1)2dq1

)
−
(

15

2R4
c

∫
B2

(Rc · r2)dq2
∫
B1

(Rc · r1)dq1
)]

(8)

Here the moments of the charge distribution given in Eq. 6 are used to simplify the equations. Using
the identity

∫
r2dq = tr([Q])/2 to simplify the above equation yields:

F20 =
Rc

4πε0R3
c

[
Q1Q2 −

3Q2

4R2
c

tr([Q1])−
3Q1

4R2
c

tr([Q2])−
3Q1

R2
c

Rc · q2

+
3Q2

R2
c

Rc · q1 +
3Q2

R2
c

q2 · q1 +
15Q1

2R4
c

∫
B2

(Rc · r2)2dq2

+
15Q2

2R4
c

∫
B1

(Rc · r1)2dq1 −
15

2R4
c

(Rc · q2)(Rc · q1)
)]

(9)

To solve the two remaining integrals, apply the vector identity (a · b)b = ([b̃][b̃] + b2[I])a to the
terms of the form (Rc · r)2 and integrate to yield

Rc · (Rc · r)r = Rc · ([r̃][r̃] + r2[I])Rc = R
T
c [r̃][r̃]Rc +R2

cr
2 (10)

→ −RT
c [Q]Rc +R2

c tr([Q])/2 (11)
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and re-write F20 finally as:

F20 =
Rc

4πε0R3
c

[
Q1Q2 +

3Q2

R2
c

tr([Q1]) +
3Q1

R2
c

tr([Q2])−
3Q1

R2
c

Rc · q2 +
3Q2

R2
c

Rc · q1

+
3Q2

R2
c

q2 · q1 −
15Q1

2R4
c

RT
c [Q2]Rc −

15Q2

2R4
c

RT
c [Q1]Rc −

15

R4
c

(Rc · q2)(Rc · q1)
]

(12)

The second part of the force F21 is much simpler because many of the terms become third order and
are neglected in this second order expansion.

F21 =
1

4πε0R3
c

∫
B1

∫
B2

r2

(
1− 3(Rc · r2 −Rc · r1)

R2
c

)
dq2dq1 (13)

=
1

4πε0R3
c

[
Q1q2 +

3Q1

R2
c

[Q2]Rc −
3Q1

2R2
c

tr([Q2])Rc +
3(Rc · q1)

R2
c

q2

]
(14)

The third part of the force F22 is similar in form to F21 with the r2 being replaced with a −r1.

F22 =
1

4πε0R3
c

∫
B1

∫
B2

−r1
(
1− 3(Rc · r2 −Rc · r1)

R2
c

)
dq2dq1 (15)

=
1

4πε0R3
c

[
−Q2q1 +

3Q2

R2
c

[Q1]Rc −
3Q2

2R2
c

tr([Q1])Rc +
3(Rc · q2)

R2
c

q1

]
(16)

The total force is then expressed as

F2 =
1

4πε0R3
c

[(
Q1Q2+

3Q2

2R2
c

tr([Q1])+
3Q1

2R2
c

tr([Q2])−
3Q1

R2
c

Rc ·q2+
3Q2

R2
c

Rc ·q1+
3Q2

R2
c

q2 ·q1

− 15Q1

2R4
c

RT
c [Q2]Rc −

15Q2

2R4
c

RT
c [Q1]Rc −

15

R4
c

(Rc · q2)(Rc · q1)
)
Rc

+Q1q2 +
3Q1

R2
c

[Q2]Rc +
3(Rc · q1)

R2
c

q2 −Q2q1 +
3Q2

R2
c

[Q1]Rc +
3(Rc · q2)

R2
c

q1

]
(17)

This equation is visualized in Table 1, where the common factor of 4πε0R3
c is omitted, allowing

easy ordering of terms based on which measures (Q, q, [Q]) they incorporate. They are also ordered
by the dimensionless ratio r/Rc where r is a characteristic dimension of either spacecraft. As the
spacecraft move farther and farther away, the higher order terms in this variable matter less and less.
The zeroth order term is in the upper left, the two boxes with two terms each are the first order
terms, and the three boxes containing twelve terms along the diagonal are the second order terms.
This table allows easy selection of the force terms needed for appropriate fidelity.

As might be expected, the force expression is symmetric, if one changes the sign on allRc terms
and switches the subscripts the force on body 1 is found to be equal in magnitude but opposite in
direction to the force on body 2. This satisfies Newton’s 3rd law.

Torque Derivation The torque on body 2 is given by T2 =
∫
B1

∫
B2
r2 × dF , where the same

binomial expansion as before is used to approximate dF to second order.

T2 =
1

4πε0R3
c

∫
B1

∫
B2

r2 × (Rc + r2 − r1)

(
1 − 3(Rc · r2 −Rc · r1)

R2
c

)
dq2dq1 (18)
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Table 1. Force ordering matrix

Q1 q1 [Q1]

Q2 Q1Q2Rc
3Q2

R2
c
(Rc · q1)Rc −Q2q1

3Q2

2R2
c

tr([Q1])Rc

− 15Q2

2R4
c
(RT

c [Q1]Rc)Rc

+ 3Q2

R2
c
[Q1]Rc

q2 Q1q2 − 3Q1

R2
c
(Rc · q2)Rc

3
R2

c
(q2 · q1)Rc

− 15
R4

c
(Rc ·q2)(Rc ·q1)Rc

+ 3(Rc·q1)
R2

c
q2+

3(Rc·q2)
R2

c
q1

[Q2]

3Q1

2R2
c

tr([Q2])Rc

− 15Q1

2R4
c
(RT

c [Q2]Rc)Rc

+ 3Q1

R2
c
[Q2]Rc

Because of the extra r2, many of the terms in the differential force expansion become third order
and are neglected. The differential torque has three parts corresponding to the r2×Rc, r2× r2 and
r2 × r1 components. The middle term is zero and the first and third are labeled by T20 and T21 ,
respectivley. T20 is evaluated first:

T20 =
1

4πε0R3
c

∫
B1

∫
B2

r2 ×Rc

(
1− 3(Rc · r2 −Rc · r1)

R2
c

)
dq2dq1 (19)

= − 1

4πε0R3
c

Rc ×
∫
B1

∫
B2

r2

(
1− 3(Rc · r2 −Rc · r1)

R2
c

)
dq2dq1 (20)

Where higher order terms in the binomial expansion are neglected. The integral is identical to the
force integral in Eq.(13) evaluated earlier, and is written down from inspection as:

T20 = −Rc ×
[
Q1q2
R3

c

+
3(Rc · q1)q2

R5
c

+
3Q1[Q2]Rc

R5
c

]
(21)

The other part of the torque comes from the r1 and is evaluated below:

T21 = − 1

4πε0R3
c

∫
B1

∫
B2

(r2 × r1)dq2dq1 (22)

The binomial expansion here is truncated to just the first term because the r2 × r1 term is already
second order. This gives

T21 = − 1

4πε0R3
c

q2 × q1 (23)

The total torque is found by summing T20 and T21 to yield

T2 =
1

4πε0R3
c

[
Q1q2 ×Rc +

3(Rc · q1)q2 ×Rc

R2
c

− 3Q1Rc × [Q2]Rc

R2
c

+ (q1 × q2)
]

(24)

This equation is visualized in Table 2 which follows Table 1 in omitting the factor of 4πε0R3
c and

grouping terms by their order in the dimensionless ratio r/Rc. Terms closer to the upper left corner
are lower order.
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Table 2. Torque ordering matrix

Q1 q1 [Q1]
Q2

q2 Q1q2 ×Rc

3
R2

c
(Rc · q1)q2 × Rc +

(q1 × q2)
[Q2] − 3

R2
c
Q1Rc × [Q2]Rc

As expected, there are no zeroth order terms, in fact there are no terms at all corresponding to the
scalar charge Q2. Unlike the force expansion, the torque is not symmetric, i.e. T1 6= −T2. This is
because the torque on body 1 and body 2 are not measured about the same point, but rather the center
of mass of each body. If all torques are measured about the same point, such as the barycenter of
the system, the torques are equal and opposite and cancel out and are not able to change the angular
momentum of the system.

Radial Electrostatic Field Simplification

In Reference [26], the force and torque on a charged body are found by assuming a differential
force of

dF2 =
Q1dq2
4πε0R3

R (25)

and integrating over body 2. Rather than repeating this integration, the first column of the force and
torque ordering tables can be added to produce force and torque because that column only considers
the scalar charge of body 1. This yields

F2 =
Q1

4πε0R3
c

[
Q2Rc + q2 −

3(q ·Rc)

R2
c

Rc +
3[Q2]Rc

R2
c

+
3Rc

2R2
c

tr([Q2])

− 15

2R4
c

(RT
c [Q2]Rc)Rc

] (26)

L2 =
Q1

4πε0R3
c

[
q2 +

3

R2
c

[Q2]Rc

]
×Rc (27)

which agrees with the derivation done with the point charge differential force. This shows how force
and torque in a radial field is a special case of the general two body problem. This is similar to how
in most treatments a satellite is treated as a point mass while the earth is treated as a general body
using spherical harmonics.

Flat Electrostatic Field Simplification

It is also of interest to calculate the force and torque on charged conducting bodies due to ambient
flat electric and magnetic fields [2]. The differential force on a differential charge moving at v
subject to E andB fields is given in Reference [27] as:

dF = dq(E + v ×B) (28)

This differential force only varies significantly across a body if it is rotating very quickly near the
geostationary point. The velocity is the orbital velocity vo plus the transport velocity: ωB/E × r
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[28], where ωB/E is the angular velocity between the satellite body frame B and the magnetic field
frame E . For a spacecraft with r = 1 m, ωB/E = 1 deg/sec, and an ECEF orbital velocity of 1
km/sec, the ratio of the transport velocity to the orbital velocity will be less than 10−5. In many
scenarios the transport term can be dropped. The force is then:

F =

∫
B
(E + vo ×B)dq = Q(E + vo ×B) (29)

and the torque is

L =

∫
B
r × (E + vo ×B)dq = (E + vo ×B)× q (30)

This is the exact answer for the torque on a pure dipole in a flat field [27, 29].

Susceptibilities of the Measures

The expansions for force and torque in the electrostatic two-body problem, radial field, and flat
field are useful formula. However, they rely on knowledge of the charge distribution on both bod-
ies in order to perform the integrations and find the measures. Unlike the gravitational two-body
problem, these measures change as charge moves throughout the bodies. Recalculating the entire
charge distribution for both bodies would be a very intensive process. Here, a method for predicting
the measures from parameters that are much more feasible to measure in situ such as the voltage,
attitude, and position of each craft is presented.

To do this, a matrix dependent on the relative position and attitude is used to translate the voltage
of each craft into a representation of the charge distribution. From this distribution, the measures
are formed as functions of the voltage of each craft. There are many ways to make this matrix,
including the Method of Moments or Boundary Element Method. A recent addition is the Multi-
Sphere Method, which uses hand-tuned parameters for the size and locations of spheres which are
constrained to be equipotential [19, 30].

MSM emerged as a way to predict the force and torque with high-enough fidelity to be useful,
while also evaluating fast enough to be practical. MSM approximates the satellite as a collection
of spheres with variable position and radii. The voltage of any sphere is a function of both its
own charge and the charge on neighboring spheres. If these spheres are far enough away to be
approximated as point charges, the voltage on the ith sphere is given by: [27, 19, 30]

Vi =
1

4πε0

qi
Ri

+

N∑
j=1, j 6=i

1

4πε0

qj
ri,j

(31)

Where qi and Ri are the charge and radius of the ith sphere, respectively, and ri, j is the distance
between spheres i and j. If the voltages of each sphere are given by V = [V1, V2, ...VN ]T and
the charges are given by Q = [q1, q2, ...qN ]T , the relationship between the two is V = [S]Q or
Q = [C]V , where [C] is the capacitance matrix and [S] is the elastance matrix defined below [31]:

[S] =
1

4πε0


1/R1 1/r1,2 · · · 1/r1,N
1/r2,1 1/R2 · · · r2,N

...
...

. . .
...

1/rN,1 1/rN,2 · · · 1/RN

 (32)
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Since the voltage is assumed known, the charge distribution is found by numerically solving the
linear system. If two conductors with n1 and n2 spheres each are considered, the elastance matrix
can be put into block form: [

V1

V2

]
=

1

4πε0

[
S1 SM
ST
M S2

] [
Q1

Q2

]
(33)

Where the voltage and charge of each craft are separated. Note that the self elastance terms S1 and
S2 are much larger than the mutual elastance terms SM because the inter-sphere separations are
much smaller inside one body rather than between the two bodies. Additionally, the self elastance
matrices contain the diagonal 1/R terms which are larger than the off-diagonal 1/r terms. As an
example, consider a template box and panel spacecraft with an 8 meter boom made from 248 spheres
and a 3 × 1 meter cylinder made from 138 spheres. The log of the elastance matrix for these two
objects with a separation of 40 meters is shown in Figure 2.
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Figure 2. Log of elastance matrix

There are clearly four blocks, and the diagonals are 102− 105 times larger than the non-diagonal
blocks. The blocky structure in the upper diagonal block comes from the method of assembly for the
the box and panel spacecraft which is made from six rectangles. In general, the diagonal blocks will
not change with relative position or attitude. The blocky structure, symmetry, and the time-fixed
properties of the diagonal blocks are exploited when inverting using the Schur complement.[

A B
BT D

]−1
=

[
(A−BD−1BT )−1 −A−1B(D −BTA−1B)−1

−D−1BT (A−BD−1C)−1 (D −BTA−1B)−1

]
(34)

Recognizing that A and D represent the self capacitance matrices, which contain much larger terms
than the mutual matrix B, terms second order in B are dropped:[

A B
BT D

]−1
≈
[

A−1 −A−1BD−1
−D−1BTA−1 D−1

]
=

[
C1 −C1SMC2

−C2S
T
MC1 C2

]
(35)

Where [Ci] = [Si]
−1 for all blocks. The two matrices C1 and C2 are not functions of the relative

separation and orientation, which means they will be constant in time. The terms in SM are of
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the form 1/||Rc + r2i − r1j ||. Since the center to center separation Rc is much greater than the
dimensions of either craft r1 or r2, this is approximated as

[SM ]i,j =
1

||Rc + r2i − r1j ||
∼ 1

Rc
(36)

Approximating all elements in the mutual capacitance matrix as 1/Rc allows the relative attitude
to be ignored while still capturing some first-order mutual capacitance and susceptibility. The elas-
tance matrix is now approximately inverted as[

Q1

Q2

]
=

1

4πε0

[
C1 −C11(n1, n2)C2/Rc

−C21(n2, n1)C1/Rc C2

] [
V1

V2

]
(37)

Where 1(n,m) is a matrix consisting of ones of size (n,m). If the two bodies are both conductors,
each MSM sphere is at the same voltage this matrix equation is transformed to a vector equation

Q1 = [C1]1(n1, 1)V1 −
[C1]1(n1, n2)[C2]

Rc
1(n2, 1)V2 (38)

Q2 = [C2]1(n2, 1)V2 −
[C2]1(n2, n1)[C1]

Rc
1(n1, 1)V1 (39)

Now the charge on each MSM sphere is approximated as a function of a collection of matrices that
do not change with state, and the scalar voltage of each craft. The susceptibility of the total charges,
dipoles, and charge tensors to the voltage of each craft are found next.

Total Charges The total charge on each spacecraft is found by summing the charge on each
sphere

Q =

n1∑
i=1

qi = 1(1, n)Q (40)

Thus, the scalar charge of body 1 is given by

Q1 = CSV1 + CMV2 (41)

Where the self and mutual capacitances are given by

CS = 1(1, n1)[C1]1(n1, 1) =

n1∑
i=1

n1∑
j=1

[C1]i,j (42)

CM =
−1(1, n2)[C1]1(n1, n2)[C2]1(n2, 1)

Rc
= −

∑n1
i=1

∑n2
j=1[C1]1(n1, n2)[C2]

Rc
(43)

The scalar self capacitance can be computed with high fidelity using a MSM model with hundreds
or thousands of spheres and re-used in each time step for computation. The numerator of the mutual
capacitance can be similarly computed at high fidelity and then divided by the norm of the separation
vector at each time step.

Dipole Moments The dipole q is defined in a continuous charge distribution and MSM model as

q =

∫
B
rdq =

N∑
i=1

riqi = [R]q (44)
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where [R] is a 3×N matrix containing the x, y, and z coordinates of each MSM sphere:

[R] =

x1 . . . xN
y1 . . . yN
z1 . . . zN

 (45)

The dipole is given by
q = χSV1 + χMV2 (46)

Where the self and mutual susceptibilities of the dipole for body 1 are

χS = [R1][C1]1(n1, 1) (47)

χM =
−[R1][C1]1(n1, n2)[C2]1(n2, 1)

Rc
(48)

Once again, these 3 × 1 vectors can be computed with high fidelity from SMSM models of each
body. Each element in the mutual term must be divided by the separation distance, which may
change with time.

Charge Tensor The charge tensor is defined from a continuous charge distribution or MSM
model as

[Q] =

∫
B
−[r̃][r̃]dq =

N∑
i

−[r̃i][r̃i]qi (49)

Define [Rs] as a 3 × 3N matrix containing the cross product matrix of each MSM sphere position
and A is a 3N ×N matrix used to interweave three copies of the charge vector made from smaller
matrices a.

[Rs] =

 [r̃1]...
[r̃N ]

 [a] =

11
1

 [A] =


a 0 . . . 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a

 (50)

The charge tensor is now found as a function of both voltages, and two 3× 3 matrices,

[Q1] = [ψS ]V1 + [ψM ]V2 (51)

where the self and mutual susceptibilities of the charge tensor for body 1 are given by

[ψS ] = [Rs1 ]
T diag([A][C1]1(n1, 1))[Rs1 ] (52)

[ψM ] = −[Rs1 ]
T diag([A][C1]1(n1, n2)[C2]1(n2, 1))

Rc
[Rs1 ] (53)

These matrices can be found using high fidelity MSM models before propagation and the mutual
term can be adjusted by dividing by the separation distance. The derivations are done for body 1,
but the susceptibilities for body 2 can easily be found by changing all subscript 2s to 1s and vice
versa.
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Flat Field Susceptibilities

A flat environmental field will change the charge distribution, but not the scalar charge. The only
measures that contribute in a flat field are the dipole and the total charge. The scalar charge is still
given by

Q = CV (54)

To find the dipole, write the voltage of each sphere as a function both of the charges and its position
relative to the total fieldA = E+ v×B where v is the velocity with respect to the magnetic field.

V = [C]−1Q− [R]TA (55)

The charges are found by
Q = [C](V − [R]TA) (56)

The dipole is then
q = χSVT + [χA]A (57)

where the self and ambient susceptibilities are given by

χS = [R][C]1(n, 1) (58)

[χA] = [R][C][R]T (59)

for a model with n spheres. The ambient susceptibility is similar to the electric susceptibility used
to calculate the polarization of dielectrics in an electric field [27].

Numerical Validation

In a flat field, AFMs and MSM give the same answers down to machine precision assuming
the same MSM model is used to calculate the susceptibilities of the measures because there is no
truncation of a binomial series. For the two-body problem, the accuracy of predictive AFMs is
checked against the truth model of SMSM, which places a large number of equal radius spheres
uniformly across the surface of the body. The radius of all spheres is varied to achieve the known
self capacitance. Although this method is slower to evaluate (due to the much larger number of
spheres), it removes the need for hand tuning and has good accuracy relative to commercial FEA
software [20]. An example SMSM model for two template “box and panel” spacecraft in close
proximity is shown in Fig. 3. Note that charge, which is shown as color, tends to bunch up at the
corners of conductors and is affected by the nearby spacecraft.

For validation, one “box and panel” spacecraft has fixed location and attitude at the origin of the
coordinate system. The second spacecraft occupies many different positions and attitudes on a shell
of a given radius. SMSM is used to find the force and torque on the fixed craft. The force and torque
is also predicted using AFMs with the susceptibilities CS , CM ,χS ,χM , [ψS ], and [ψM ] for each
craft found before computation from the same 256-sphere SMSM model. The average percent error
is computed for each spherical shell. The percentage error is computed as:

PE = 100 ∗ ||aAFM − aT||
||aT||

(60)

Where a is either the force or torque, and the subscript “T” indicates the truth model.
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Figure 3. Example SMSM configuration for two satellites

The second craft is placed at points on a spherical shell precomputed using a golden spiral algo-
rithm [32] which arranges 20 points equidistantly on the surface of a sphere. The shells are varied
in radius logarithmically from 15 to 200 meters in 10 steps. The attitude of the second object at
each of these points is changed using three random Euler angles while the first object is held fixed
in attitude at the origin. The mean percentage error per shell is shown in Figure 4
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Figure 4. Percentage errors for force and torque using predictive AFMs

The mean percentage error for the zeroth, first, and second order expressions for force are shown
as red, green, and blue lines in the force plot. Since there is no zeroth order term for torque pre-
diction, only the first and second order expressions are shown in the torque plot. A dashed line is
shown 1 standard deviation above each of these to give a sense of the variation a user should expect.

The errors are initially very high, a few hundreds of percent, but they drop quickly as the space-
craft move farther apart. Since the AFM derivation hinges on the assumption that the spacecraft
sizes are much smaller than the distance between them, this matches intuition. The second order
term for force drops below 5% error at 25 meters and the second order term for torque drops below
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5% at 48 meters.

ANALYSIS AND APPLICATIONS

There are many numerical methods for electrostatic force and torque prediction for conductors.
However, they do not give good analytical forms for force and torque. This section summarizes
previous work that curve fit the angular and voltage dependencies of electrostatic torque, and then
uses AFMs to analytically predict the same result. Next AFMs are used to predict the torque in the
case where the center of mass is not aligned with the exact center of the target object.

Figure 5. Coordinate system for example analysis

Bennett et. al. used MSM to calculate the torque on a 3 × 1 meter target cylinder due to a
spherical tug craft for different voltages and angles [33]. This set up is shown in Fig. 5. The
cylinder has the same voltage magnitude as the sphere, and is always positive while the tug sphere
can change the polarity of its voltage: V2 = |φ|, V1 = φ. The torque is only about the z axis due to
the symmetry, and is shown as a function of both the angle θ and the voltage φ. This plot is shown
for near field (2.5 meter separation) and far field (15 meter separation) cases in Fig. 6. The voltage
dependance follows a quadratic relationship, and the angular dependance is well approximated by
sin(2θ). The torque is then curve fit to be:[33]

L = γf(φ)g(θ) = γφ|φ| sin(2θ) (61)

In the near field, γ divides into a larger value for attraction γa and a smaller value for repulsion
γr. At further separations the difference between attraction and repulsion is less evident.

The angular, voltage, and attraction/repulsion trends that have been empirically found using MSM
are now derived using AFMs. Referencing Eq. 27, the torque on a general body due to a nearby
point charge is given by

L2 =
Q1

4πε0R3
c

[
q2 +

3

R2
c

[Q2]Rc

]
×Rc (62)

re-writing this in terms of susceptibilities gives:

L2 =
CS1V1 + CMV2

4πε0R3
c

[
(χS +

3

R2
c

[ψS ]Rc)V2 + (χM +
3

R2
c

[ψM ]Rc)V1

]
×Rc (63)
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Figure 6. MSM torque surfaces at a separation distances of d = 2.5 m and d = 15 m
for V1 = φ and V2 = |φ| [33].

This equation is grouped into four separate terms

L2 =
1

4πε0R3
c

[
CM (χS +

3

R2
c

[ψS ]Rc)V
2
2 + CS1(χM +

3

R2
c

[ψM ]Rc)V
2
1

+ (CS1(χS +
3

R2
c

[ψS ]Rc) + CM (χM +
3

R2
c

[ψM ]Rc))V1V2
)]
×Rc

= AV 2
1 +BV 2

2 + (C +D)V1V2 (64)

In this this 1-D case the torque is purely about the z axis and is written using scalars as

L = AV 2
1 +BV 2

2 + (C +D)V1V2 (65)

The terms A and B have one mutual term and are thus 1st order in (1/Rc), C is 0th order, and D
is 2nd order. This means that in the far field terms linked to C will persist longer than those linked
to A and B, which will persist longer than those linked to D. Because the mutual susceptibilities
(CM ,χM , [ψM ]) are negative but the self susceptibilities are positive, A,B and D are negative, but
C is positive and larger than D.

Thus the following development switches to the positive variables F = |A+B| andG = C+D,
and makes use of the definitions V1 = φ, V2 = |φ| to match prior work [33]. The torque for
attractive (La) and repulsive (Lr) cases is given by:

Lr = (−F +G)φ2 = (−F +G)φ|φ| (66)

La = (−F −G)φ2 = (F +G)φ|φ| (67)

In the attractive cases the magnitude of the torque is larger because F andG add rather than subtract.
This can be seen empirically in Fig. 6(a). Additionally, since G has the highest order term, it will
matter most in the far field. Since F matters less in the far field, the difference between the attractive
and repulsive torque decreases in the far field, which can also be seen by comparing Fig. 6(a) and
6(b).
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In prior work Reference [33] numerically fit the far field parameter γ to a value of 2.234 ∗ 10−14
for a 3 meter by 1 meter cylinder 15 meters away from a 1 meter diameter sphere. To compute the
corresponding value from AFMs, assume that the center of mass is perfectly aligned with the center
of charge so that χS = 0 and the body axes are aligned so that [ψS ] is given by diag(ψB, ψs, ψB),
where ψB > ψs. This represents the case of a perfectly axis-symmetric cylinder as shown in
Figure 5. Ignoring the mutual part of G which decays quickly gives the torque as

L =
−3CS1

4πε0R5
c

R̃c[ψS ]RcV1V2

=
3CS1

8πε0R3
c

(ψB − ψs) sin(2θ)V1V2ẑ (68)

Where G is defined as
G =

3CS1

8πε0R3
c

(ψB − ψs) (69)

SMSM is used to find the values of ψS and ψB which gives G ≈ 2.531 ∗ 10−14, only a 13%
difference with the numerically fit value used in Reference [33]. These two results agree well
considering that only a second order AFM model is used and the mutual part of G is ignored, and
Reference [33] fits γ to the full MSM solution.

Now consider the same cylinder, but allow the center of mass to move within the craft by a few
centimeters along the y axis ( χS = [0, χS , 0]

T ). The torque is still only about the z axis and is
given by

L2 =
−CS1

4πε0R3
c

R̃c

(
χS +

3

R2
c

[ψS ]Rc

)
V1V2

=
−CS1

8πε0R2
c

[
χS cos(θ) +

3(ψB − ψs)

2Rc
sin(2θ)

]
V1V2ẑ (70)

Setting χS = 0 recovers Eq. (68), but even a small CM offset can make the cos(θ) term domi-
nate, especially at large separations. As the CM moves away from the geometric center, χS grows
linearly, and some elements of ψS grow quadratically. The torque as a function of θ is shown for a
variety of CM offsets in the example of the same cylinder 15 meters away from a 1 µC point charge
in Figure 7. The different curves are for different values of χS – the center of mass offset is shown
in the legend.

The torque slowly changes from a perfect sin(2θ) to an augmented -cos(θ) curve as the CM offset
varies. The magnitude of the torque also increases by a factor of 3.38. This factor is even greater
at further separations since the cos(θ) term has lower order in 1/Rc. Knowledge of center of mass
to center of charge differences are essential for the stability of control laws used for de-spinning
of passive space debris. If the center of charge location is not properly accounted for, the sign of
the predicted torque can be wrong, leading to instabilities in the closed-loop control discussed in
Reference [33].

CONCLUSION

This paper presents a novel method for analytically predicting the force and torque on conducting
bodies using knowledge of the voltage of each, their relative separation, and relative attitude. This
is accomplished by approximating the force and torque using a truncated binomial series to identify
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Figure 7. Torque on cylinder for a variety of center of mass offsets

the first three moments of the charge distribution (Q, q, [Q]). Next, these measures of the charge
distribution are predicted using a capacitance-matrix formulation, where the structure of the capac-
itance matrix is found using MSM and the block pseudo inverse formula is approximated. This
method yields less than 5% accuracy errors for separations larger than 50 meters for the case of two
8 meter template GEO satellites. This level of accuracy is sufficient for controls analysis beyond a
few craft diameters.

The biggest strength of the AFMs is their ability to provide analytical force and torque expression
for many control and dynamics applications. As an example, AFMs are used to predict the torque
on a cylinder in the presence of a nearby point charge. The sign and magnitude of the torque have
a strong dependance on the possible offset between the center of mass and center of charge in the
cylinder. While challenging to derive, AFMs offer analytic insight to difficult charged dynamics
and control problems.
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