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AAS 11-466

RELATIVE MOTION CONTROL FOR TWO-SPACECRAFT
ELECTROSTATIC ORBIT CORRECTIONS

Erik A. Hogan∗, and Hanspeter Schaub†

The charged relative motion dynamics and control of a two-craft system is in-
vestigated if one vehicle is performing a low-thrust orbit correction using inertial
thrusters. The nominal motion is an along-track configuration where active elec-
trostatic charge control is maintaining an attractive force between the two vehicles.
In this study the charging is held fixed, and the inertial thruster of the tugging ve-
hicle is controlled to stabilized the relative motion to a nominal fixed separation
distance. Using a candidate Lyapunov function, the relative orbit control law of
the tugging vehicle with respect to the passive vehicle is shown to be asymptoti-
cally stable. Analysis of the control system gains is performed in order to achieve a
desired settling time and damping ratio. The effects of uncertainties in the vehicle
charges are also examined. Using numerical simulation, the performance of the
proposed control system is investigated for a formation in GEO. Results obtained
from integration of the relative equations of motion are compared to full inertial
simulations.

INTRODUCTION

Electrostatic force actuation for spacecraft formation control is a concept that is gaining signifi-
cant attention in the field of formation flying.1, 2 In these Coulomb formations, active charge control
is applied to generate specified inter-craft electrostatic forces that are used to manipulate the relative
positions of the nodes within the formation.3 In the presence of perturbations, such as differential
gravity, these forces may be used to maintain coherence of multiple craft in close proximity.4 Elec-
trostatic forces have also been proposed as a method to inflate a tethered structure where individual
nodes of a formation are connected by physical tethers such as cables.5, 6

The prior work on charged relative motion dynamics of clusters of spacecraft only considers the
relative motion control of a non-perturbed system.4, 7, 8 The active charge control is expected to be
extremely fuel efficient (Isp values as high as 109 − 1012 seconds) and require small, Watt levels of
electrical power to operate.9 These concepts assume separation distances on the order of dozens of
meters. However, an unexplored research area is how do such Coulomb spacecraft clusters perform
orbit corrections. In particular, if only a sub-set of cluster elements perform inertial thrusting, then
the passive cluster elements must be tugged along with the electrostatic forces. Of interest is how
can the charged relative motion dynamics be stabilized, without resulting in collisions of the cluster
members, while a low-thrust orbit correction is being engaged.

A related scenario is considered in in Reference 10. Here the use of electrostatic forces to tug a
space debris object into a disposal orbit is investigated. Using thrusters operating on the milliNewton
∗Graduate Student, Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO
†Associate Professor, H. Joseph Smead Fellow, Department of Aerospace Engineering Sciences, University of Colorado,
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level, the tug craft approaches and engages the debris object. Because the electrostatic forces do not
require a physical tether to exist between tug and target, the debris object can be reorbited without
requiring any physical contact. Once the electrostatic force is active between the tug and debris,
the tug utilizes low-thrust to slowly pull the debris into a disposal orbit. Reference 10 considers the
effort required to achieve a disposal orbit, and investigates how the debris orbital elements change
with time under the influence of the tug. Reference 10 does not, however, consider the relative
motion of the two craft during the reorbiting maneuver; nor does it propose a feedback control
system for maintaing the tug and debris object in the necessary relative positions.

The current work presents the first discussion on feedback stabilizing the charged relative mo-
tion while one cluster element is performing a low-thrust orbit correction. The relative equations of
motion between a tug (or chief) craft and a secondary craft (called a deputy) are developed, and a
control algorithm is proposed to maintain a desired relative position using inertial thrusting on the
chief only. The applications of the current study include electrostatic debris reorbiting applications,
as well as maintaining an observation craft in close proximity to a main craft that can provide real
time visual information. If the main craft needs to reorbit as part of its mission requirements, it may
do so with the observer in tow. The following developments are made in a general way, so as to be
applicable to any charged two-craft formation in orbit, whether reorbiting a debris object or main-
taining an observer in close proximity. Due to the limitations of the plasma shielding of electrostatic
charge, the application of the electrostatic tether reorbiting concept focuses onspacecraft in or near
geosynchronous orbit.

The paper is structured as follows. First, the fundamentals of relative dynamics with respect to
a slowly accelerating Hill frame are provided. The relative dynamics of the two craft in the rotat-
ing Hill frame are developed considering gravitational, electrostatic, and thruster effects. Next, a
spherical coordinate frame is introduced and the equations of motion are developed in this spherical
frame. The spherical frame is then used to develop a control law using Lyapunov stability anal-
ysis. Consideration of desired settling times and the nature of damping in the system response is
used to select gains for the controller. After that, the effects of uncertainties in the craft charges on
the control system response are investigated. Finally, numerical simulation is used to illustrate the
performance of the controller in maintaining the desired relative position of chief and deputy.
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RELATIVE ORBITAL DYNAMICS DURING ORBIT CHANGE MANEUVER

Hill Coordinate Frame

The Local-Vertical-Local-Horizontal (LVLH), often also referred to as the Hill coordinate frame,
is briefly outlined in this section. A rectilinear Hill frameH : {ôr, ôθ, ôh} is attached to the tug (or
chief) orbital position as illustrated in Figure 1. This rotating frame has it origin coincide with the
tug center of mass, and the orientation is defined through

ôr =
rT
rT
, ôθ = ôh × ôr, ôh =

rT × ṙT
|rT × ṙT |

(1a)

where rT is the inertial position vector of the chief, ṙT is the inertial velocity vector, and the short-
hand notation rT = |rT | is used.

The direction cosine matrix (DCM) of the Hill frame relative to an inertial frame, expressed
through N : {n̂1, n̂2, n̂3}, is defined through11

[NH] =
[Nôr Nôθ

Nôh
]

(2)

Let ωH/N be the angular velocity of the Hill frame relative to the inertial frame, then Hill-frame
centric deputy motion Hρ is translated into inertial motion Nrd using

Nrd = NrT + [NH] Hρ (3)

where

Hρ =

xy
z

 (4)

and (x, y, z) are the Hill-frame centric cartesian deputy position coordinates. The inertia and Hill-
frame relative velocities are related using the transport theorem:11

Nṙd = NṙT + [NH]

(
d(Hρ)

dt
+ HωH/N × Hρ

)
(5)

where

d(Hρ)

dt
= Hρ′ =

ẋẏ
ż

 (6)

Note the use of the short-hand notation for Hill-frame dependent time derivatives:

Hd(ρ)

dt
≡ ρ′ (7)
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Relative Motion With Respect to a Constantly Accelerating Frame

Next the classical Hill frame relative orbital dynamics are revisited considering that the Hill frame
is no longer on a circular orbit, but on a slowly spiraling trajectory. This study only investigates
inertial thrusting to perform Semi-Major Axis (SMA) changes which require thrusting in the along-
track direction.

The deputy and chief inertial position vectors are related through

rd = rT + ρ (8)

The relative motion ρ is thus expressed through

ρ = rd − rT (9)

Note that this is a coordinate-frame independent vector formulation of the relative motion. Taking
two inertial time derivatives of Eq. (9) yields

ρ̈ = r̈d − r̈T (10)

The inertial chief or tug equations of motion are given through

r̈T = − µ

r3T
rT +

Fc
mT

+ uT (11)

where µ is the gravitational constant, and mT is the chief mass. The first term of the right hand side
is the gravitational acceleration, while Fc is the electrostatic force acting between tug and deputy,
and uT is the net control acceleration being produced by the chief’s inertial thrusters. The inertial
deputy equations of motion are

r̈d = − µ
r3d
rd −

Fc
md

(12)

where md is the deputy mass.

Substituting Eqs. (12) and (11) into Eq. (10) yields the vector relative equations of motion

ρ̈ = − µ
r3d
rd +

µ

r3T
rT −

Fc
md
− Fc
mT
− uT (13)

Defining the control acceleration vector u as

u = −Fc
(
mT +md

mTmd

)
− uT (14)

the relative EOM are rewritten as

ρ̈ = − µ
r3d
rd +

µ

r3T
rT + u (15)

This algebraic form is equivalent now to the classical Clohessy-Wiltshire-Hill (CWH) equations
of relative motion, where u would be the deputy control acceleration. Note that the control ac-
celeration u contains both the impact of performing inertial thrusting, as well as the influence of
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the electrostatic attraction. To obtain ρ̈, we need to take two inertial time derivatives. The inertial
derivative of ρ is

ρ̇ = ρ′ + ωH/N × ρ (16)

If the chief vehicle is on a circular orbit, then the orbital angular velocity vector is simply

ωH/N = nôh (17)

where n =
√
µ/a3 is the mean orbit rate, and a is the tug semi-major axis. However, because the

tug is performing a low-thrust semi-major axis orbit change, the mean orbit rate n is not constant,
but rather n = n(t) is a function of time. However, the deputy reorbiting is assumed to not change
the orbit plane of the deputy because only the SMA is being changed. Thus, the orbit normal
direction ôh is inertially fixed, and the orbit angular velocity is written as

ωH/N = n(t)ôh (18)

Note that the tug can maneuver relative to the deputy a general way. Thus, if charge control is
turned on during general three-dimensional relative motion, then small deputy orbit plane changes
are possible. However, these variations are ignorable because the nominal configuration has the tug
accelerating the deputy in the positive along-track direction. This configuration provides the most
efficient means to increase the semi-major axis of the deputy, and thus raise its orbit altitude.

Taking the inertial derivative of Eq. (16) yields

ρ̈ = ρ′′ + 2ωH/N × ρ′ + ω̇H/N × ρ+ ωH/N ×
(
ωH/N × ρ

)
(19)

For the CWH equations where the chief motion is circular the orbital angular acceleration ω̇H/N
is set to zero and dropped from this expression. For optimal SMA corrections, the along-track
acceleration aθ of the deputy is given by

aθ =
Fc
md

(20)

The orbit angular acceleration is then approximated as

ṅ =
aθ
rd

(21)

Knowing the actual along-track acceleration aθ it would be possible to include this term. In practice
determining this orbital acceleration term is non-trivial because the tug-deputy system is not aligned
with the along track direction at all times. Further, the orbital acceleration requires knowledge of
the exact electrostatic force between the two bodies. This is can be very challenging to obtain in
practice. However, as the following analysis shows, this acceleration is a very small term that be
neglected for the purpose of modeling the slowly-accelerating relative motion dynamics. Thus, the
question is for what electrostatic force levels F ∗c will ṅ ≈ n2. Using Eqs. (20) and (21) we find

F ∗c
mdrd

= ṅ ≈ n2 ⇒ F ∗c = n2mdrd (22)
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Assuming a deputy craft with the mass md = 2000 kg, and the geostationary orbit radius of about
rd = 42,000 km, we obtain

n = 7.335 · 10−5 rad/s

n2 = 5.3801 · 10−9 rad/s

This leads to a critical acceleration force of

F ∗c = 451.9 N

Because the expected electrostatic forces are expected to be in the milli-Newton range, the actual Fc
are about 5 orders of magnitude smaller than this critical acceleration force. This justifies neglecting
the difficult to measure ω̇H/N in Eq. (19), resulting in the simplified relative motion acceleration
expression

ρ̈ = ρ′′ + 2n(t)ôh × ρ′ + n(t)2ôh × (ôh × ρ) (23)

using Eq. (18). Note that the orbit rate n(t) will decrease by about 1.1% as the deputy is reorbited
from GEO to a 300 km larger super-synchronous orbit. Because the slowly varying orbit rate is easy
to measure, it is kept as a time-dependent parameter in our relative equations of motion.

Next, let us refine the vector equations of motion in Eq. (7), which do not depend on a particular
coordinate system, into the equivalent matrix form which provides the ordinary differential equa-
tions for the Hill frame coordinates (x, y, z). Assuming ρ is much smaller than rT , the differential
gravity term is reduced to a linear form.11 After linearizing the ρ̈ term, a modified version of the
classical CWH equations are obtained:

ẍ− 2n(t)ẏ − 3n2(t)x = ux (24a)

ÿ + 2n(t)ẋ = uy (24b)

z̈ + n2(t)z = uz (24c)

Note that the constant mean orbit rate n of the CWH equations is replaced with the osculating n(t)
orbit rate expression. The Coulomb forcing and inertial thrusting influence on the relative deputy
motion with respect to the tug is embedded within the control acceleration u expressions.

Relative Spherical Equations of Motion

The Cartesian form of the CW equations are not very convenient for the relative motion con-
trol development in that the rectilinear (x, y, z) coordinates couple both information regarding the
separation distance as well as the relative orientation. Instead a set of spherical relative position
coordinates (L, θ, φ) are employed where L is the center-to-center separation distance of the tug
and deputy, θ is the inplane rotation angle, and φ is the out of plane rotation angle. The spherical
coordinate frame S : {ŝL, ŝθ, ŝφ} is illustrated in Figure 2.

The relative orientation angles θ and φ are a 3-2 Euler angle sequence with respect to the Hill
frame H. Carrying out the matrix multiplication leads to the DCM mapping from the Hill to the
spherical frame:

[SH] =

cos(φ(t)) sin(θ(t)) − cos(θ(t)) cos(φ(t)) − sin(φ(t))
cos(θ(t)) sin(θ(t)) 0

sin(θ(t)) sin(φ(t)) − cos(θ(t)) sin(φ(t)) cos(φ(t))

 (25)
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ôθ

ôh
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The S andH position coordinates are related through:

L =
√
x2 + y2 + z2 (26a)

θ = arctan

(
x

−y

)
(26b)

φ = arcsin

(
−z
L

)
(26c)

and xy
z

 = [SH]T

L0
0

 =

 L sin θ cosφ
−L cos θ cosφ
−L sinφ

 (27)

The relative motion rate coordinates are related through:L̇θ̇
φ̇

 =

cos(φ) sin(θ) − cos(θ) cos(φ) − sin(φ)
cos(θ) sec(φ)

L
sec(φ) sin(θ)

L 0

− sin(θ) sin(φ)
L

cos(θ) sin(φ)
L − cos(φ)

L


ẋẏ
ż

 (28)

and ẋẏ
ż

 =

 sin θ cosφ L cos θ cosφ −L sin θ sinφ
− cos θ cosφ L sin θ cosφ L cos θ sinφ
− sinφ 0 −L cosφ


L̇θ̇
φ̇

 (29)

Substituting the kinematic transformations in Eqs. (27) and (29) into the rectilinear EOM in
Eq. (24), and performing significant algebraic simplifications, leads to the following spherical rela-
tive equations of motion: L̈θ̈

φ̈

 = [F (L, θ, φ, L̇, θ̇, φ̇)] + [G(L, φ)] Su (30)
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where

Su =

uLuθ
uφ



[F ] =


1
4L
(
n2(t)

(
−6 cos(2θ) cos2(φ) + 5 cos(2φ) + 1

)
+ 4θ̇ cos2(φ)

(
2n(t) + θ̇

)
+ 4φ̇2

)
(

3n2(t) sin(θ) cos(θ) + 2φ̇ tan(φ)
(
n(t) + θ̇

))
− 2 L̇L

(
n(t) + θ̇

)
1
4 sin(2φ)

(
n2(t)(3 cos(2θ)− 5)− 2θ̇

(
2n(t) + θ̇

))
− 2 L̇L φ̇


[G] =

1 0 0

0 1
L cosφ 0

0 0 − 1
L


Note that due to the kinematics of spherical coordinates, this description is singular for large

out-of-plane motions where φ→ ±π/2.

Electrostatic Force Model

In order to implement the dynamic model, an expression for the electrostatic force between two
craft is needed. Here, the two bodies will be treated as spheres. For an isolated sphere in a vacuum,
the charge to voltage relationship is

V = kT
q

R
, (31)

where R is the sphere radius, q is the charge on the sphere, and kT is the Coulomb constant. When
another charged object is in close proximity, this voltage to charge relationship no longer holds, as
the second object will affect the charge distribution on the first. In this application, the voltages on
the craft are considered to be held at constant values.

The voltages on the two spherical craft are denoted as V1 and V2. The potential on craft one is
thus a function of the self capacitance in Eq. (31) and the potential due to the second sphere,12

V1 = kT
q1
R1

+ kT
q2
L
. (32)

The potential on craft two can be obtained in the same manner. The voltages on both spheres are
linear functions of the charges, expressed as[

V1
V2

]
= kT

[
1
R1

1
L

1
L

1
R2

][
q1
q2

]
(33)

If the voltages on the spheres are held constant, the charges may be solved for at any point in time
by inversion of Eq. (33).

This approach to charge determination given craft voltages is relatively new in the field of Coulomb
formation flying, where craft have traditionally been treated as point charges. More information
about using this position dependent capacitance model is given in Reference ?. Craft of arbitrary
geometries will certainly not be perfect spheres. However, spherical models are more appropriate
than point charge approximations as they allow for the effects of neighboring craft to be included in
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the charge to voltage model. Furthermore, Reference ? provides a method for determining effective
spheres for arbitrary craft geometries. Essentially, a spherical approximation is found which most
closely replicates the effects of some arbitrary geometric shape. These effective sphere radii can
then be used in Eq. (33) to determine the charges on the craft.

Once the charges on each craft have been determined, the electrostatic force between the craft is
computed as

FT = kT
q1q2
L2

. (34)

Note that the force acts along the line of sight vector connecting the center of the spheres. If the
craft are charged to the same polarity, the force will be repulsive. If the craft are charged to opposite
polarity, the force will be attractive.

RELATIVE MOTION FEEDBACK CONTROL DESIGN AND ANALYSIS

Nonlinear Control Development

For the relative control algorithm design, the equations of motion in the spherical frame are used.
The spherical equations of motion are convenient because the L parameter corresponds directly to
the separation distance between the craft. Careful actuation of the separation distance is critical,
as it must be ensured that the two craft to do not impact each other. Consider the state vector
X = [L θ φ]T . With a proper control law, thrusting can be used to enforce some desired relative
position of chief and deputy defined in terms of the spherical coordinates. Such a control law is
developed using the candidate Lyapunov function

V (X, Ẋ) =
1

2
(X −Xr)

T [K](X −Xr) +
1

2
ẊT Ẋ, (35)

where [K] is a positive definite gain matrix andXr is a vector containing some desired steady state
values for L, θ and φ. Taking the time-derivative of V yields

V̇ (X, Ẋ) = ẊT ([K](X −Xr) + Ẍ). (36)

Substituting Eq. (30) in for Ẍ , the Lyapunov function rate is expressed as

V̇ (X, Ẋ) = ẊT ([K](X −Xr) + [F (L, θ, φ, L̇, θ̇, φ̇)] + [G(L, φ)] Su). (37)

To ensure stability, the Lyapunov function rate is set to the negative semidefinite form

V̇ (X, Ẋ) = −ẊT [P ]Ẋ, (38)

where [P ] is a positive definite gain matrix. Selecting Su to be

Su = [G(L, φ)]−1
(
−[P ]Ẋ − [K](X −Xr)− [F (L, θ, φ, L̇, θ̇, φ̇)]

)
(39)

satisfies the negative semidefinite form in Eq. (38). While this ensures stability in the sense of
Lyapunov, it does not guarantee asymptotic convergence to the desired reference location Xr. To
prove asymptotic convergence higher order derivatives of the Lyapunov function are used, which
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are evaluated on the set V̇ (X, Ẋ) = 0.13 The closed loop response of the system with the control
developed above is

Ẍ + [P ]Ẋ + [K](X −Xr) = 0. (40)

The second derivative of the Lyapunov function is

V̈ (X, Ẋ) = −2ẊT [P ]Ẍ. (41)

Evaluated on the set Ẋ = 0 (which corresponds to V̇ (X, Ẋ) = 0), it is clear that the second
derivative of the Lyapunov function is zero. Computing the third derivative yields

...
V (X, Ẋ) = −2ẌT [P ]Ẍ − 2ẊT [P ]

...
X. (42)

After substituting the closed loop dynamics in Eq. (40) and evaluating on the set Ẋ = 0, the third
derivative of the Lyapunov function is reduced to

...
V (X, Ẋ) = −2(X −Xr)

T [K]T [P ][K](X −Xr), (43)

which is negative definite in terms of X due to the fact that both [K] and [P ] are positive definite.
Thus, the control law is asymptotically stabilizing. Furthermore, due to the quadratic form of both
V and V̇ , it is concluded that the controller is globally asymptotically stabilizing.

The control acceleration Su contains contributions from both the inter-craft Coulomb force and
the inertial thrusters on the tug satellite,

Su =

uLuθ
uφ

 = SFT

(
1

mT
+

1

md

)
+
STt
mT

. (44)

Once the necessary control acceleration is known, the thrust vector is computed as

STt = mT

(
Su− SFT

(
1

mT
+

1

md

))
(45)

Gain Selection

In order for the electrostatic force to be functional as a tether, the inertial thrust magnitude must
be small enough so that the craft do not pull away from each other. With an electrostatic force
magnitude on the order of milliNewtons, an inertial thruster magnitude on the order of Newtons
would be too large to prevent the tug and deputy from pulling away. The thrust magnitude and
electrostatic force magnitude must be on the same order. Thus, it is important to select control
system gains that will result in appropriate thrust levels.

If the [K] and [P ] matrices are selected to be diagonal, the closed-loop equations of motion for
each of the three coordinates decouple into the form

L̈+ PLL̇+KL(L− Lr) = 0 (46a)

θ̈ + Pθθ̇ +Kθ(θ − θr) = 0 (46b)

φ̈+ Pφφ̇+Kφ(φ− φr) = 0. (46c)
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The response of the system will mimic a simple damped harmonic oscillator. This allows for the
selection of gains to control both the damped nature of the response, and the settling time. Consider
the standard harmonic oscillator equations of motion,

ẍ+ 2ζωnẋ+ ω2
nx = 0, (47)

where ωn is the natural frequency of the system and ζ is the damping coefficient. Here, a slightly
underdamped response will be prescribed. To achieve this, the desired ζ value is set at 0.925 for
each of the three spherical coordinates. Correspondingly, each of the Pi gains is set at 1.85ωn.
Note that the natural frequency of each of the coordinate responses is directly controlled by the gain
Ki with the relationship ωn,i =

√
Ki. The values for the gains Ki are determined by choosing

a desired settling time for the system. The settling time, denoted as Ts, is the time at which the
response reaches and stays within two percent of its final value. From the system dynamics, the
settling time is computed as14

Ts =
− ln(0.02

√
1− ζ2)

ζωn
. (48)

Because of the relationship between the feedback gains Ki and the natural frequency of the system
response, the necessary gain for any desired settling time can quickly be determined. For a given
settling time with the slightly underdamped response specified above, the gains for the system are

Ki =

(
− ln(0.02

√
1− 0.9252)

0.925Ts

)2

=
27.829

T 2
s

(49a)

Ci = 1.85
√
Ki. (49b)

The effects of the settling time on the control system gains are readily apparent. As the settling
time is increased, the gains will decrease. This is illustrated in Figure 3, which shows the gains
necessary to achieve a variety of settling times with nearly critical damping. Note that the desired
settling times are plotted as a fraction of a GEO orbital period. The rate of decrease for the K gain
is higher than that of the P gain. This can be attributed to the fact that K decreases as 1/T 2

s , while
C decreases as 1/Ts. This inversely proportional decay has important implications on thruster
requirements. The necessary thrust magnitudes are directly affected by these gains; if a quick
settling time is desired, the required thrust magnitudes will be much higher than those for a slower
settling time. To illustrate this point, consider the required initial thrust magnitude for a particular
case where the initial position errors are (L − Lr) = 10 m, θ = 10o, and φ = 10o. Assuming
the craft are stationary relative to each other at this epoch, the resulting control thrust magnitudes
for this initial error are shown in Figure 3. The thrust magnitudes vary several orders of magnitude
depending on the settling time, ranging from hundredths of a Newton to tens of microNewtons.
When considering a baseline settling time to serve as the standard for the controller, this variation
must be considered carefully. Once the parameters have converged to their desired values, the thrust
in the L direction will converge to an order of magnitude on par with the Coulomb force acting
between the two bodies, which will be on the order of milliNewtons. While thrust levels on the
order of Newtons are certainly achievable, it would be very difficult to achieve a resolution accuracy
down to the order of fractions of a milliNewton. For this reason, it is better to choose a settling time
that will keep that maximum thrust level on the order of milliNewtons. Thrusters operating on this
level should be able to achieve the resolution accuracy necessary to offset the Coulomb force once
the relative craft positions converge to the desired locations. For this reason, a settling time of 0.1
orbital periods will be selected as the baseline settling time.
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Figure 3. Effects of settling time on control system gains.

Uncertainties in Craft Charges

The control system formulation assumes that the charges on the craft are known exactly. Natu-
rally, it is of interest to determine the effects on the control system response when the craft charges
are modeled imperfectly. This is an important consideration because in actual implementation, the
charges will not be known precisely. When the charges are not modeled correctly, the closed loop
response of the control system for the separation distance L is

L̈+ PLL̇+KL(L− Lr) =
kT
L2

(Q12 −Q12e)

(
1

mT
+

1

md

)
, (50)

where kT is Coulombs constant, Q12 is the actual charge product (q1q2) of the two craft, and Q12e

is the estimated charge product implemented in the controller. It is desired to obtain information
about where the equilibrium separation distance is with improperly modeled charges. To do so, the
equilibrium conditions L̈ = L̇ = 0 are applied. For compactness of notation, introduce

µ = kT

(
1

mT
+

1

md

)
(51a)

∆Q = (Q12 −Q12e). (51b)

The closed loop equilibrium positions are found by solving

KL(L− Lr) =
µ

L2
∆Q.
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Figure 4. Effects of settling time on initial thrust magnitudes for errors of (L−Lr) =
10 m, θ = 10o, and φ = 10o.

With minor rearranging, a third order polynomial is obtained,

KLL
3 −KLLrL

2 − µ∆Q = 0 (52)

The roots of this polynomial yield the equilibrium separation distance of the deputy relative to
the chief. Note that only positive L values are realizable, based on the way the coordinate frame
is defined. Because the L-direction is defined from the deputy to the chief, a negative L value
can never be obtained. Thus, we are concerned only with the existence of positive roots of the
polynomial. The existence of such roots can be determined using Descartes rule of signs.

The sign of ∆Q plays an important role in determining the existence of positive roots. First,
consider the case when the control system over-predicts the craft charges. That is, the actual mag-
nitudes of the craft charges are smaller than implemented in the control system. When this is the
case, ∆Q will be positive. In the polynomial, only one sign change will occur between the L3 and
L2 terms. As a result, it is certain that there will be one positive root, meaning the control system
will drive the system to a positive L value. The magnitude of this equilibrium L is dependent on the
feedback gain, the charges, and the craft masses.

Different behavior is obtained when the charges are under-predicted. When the controller as-
sumes smaller charge magnitudes than the craft actually experience, ∆Q is negative. Now, the
polynomial will have two sign changes. This means that there will be either zero or two real posi-
tive roots. The possibility of no equilibria is intriguing, as it implies the control system may fail to
prevent a collision between the deputy and chief. To determine at which point the transition between
zero and two positive roots occurs, the condition where Eq. (52) and its derivative both equal zero
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simultaneously is considered. The derivative of (52) taken with respect to L is

3KLL
2 − 2KLLrL = 0, (53)

which has a root at

L =
2

3
Lr. (54)

Plugging this value back into the original polynomial yields the necessary gain that will ensure the
existence of positive real roots. In order to ensure that an equilibrium exists in the closed loop
system response, it is required that

KL ≥
27µ|∆Q|

4L3
r

. (55)

Interestingly, the requirement on the gain is dependent on the reference separation distance, Lr,
and the error in the charge requirements. The required gain actually decreases with the cube of the
reference distance. As a result, much higher gains are needed to ensure an equilibrium exists when
the craft are desired to fly close than when they are desired to fly far apart. In order to properly
bound KL, some knowledge is needed regarding what errors may be expected in the estimation of
the craft charges.

0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

f

Eq
ui

lib
riu

m
 L

oc
at

io
ns

 (m
)

1+ Root
0+ Roots 2+ Roots

Scaling Factor f

E
q
u
il
ib

ri
u
m

L
o
ca

ti
on

s

Under-prediction Over-prediction

Figure 5. Effects of sweeping scaling parameter f on equilibrium locations.

To illustrate the importance of proper gain selection, equilibrium locations are determined for
an example case as a function of uncertainty in the craft charges. To provide a scalable parameter
representative of the severity of under- or over-prediction, the estimated charge product is defined
as

Q12e = fQ12, (56)
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Table 1. Initial spherical coordinates used in simulation

L θ φ L̇ θ̇ φ̇

37.03 m -34.12◦ 15.67◦ 5.97× 10−7 m/s 1.58× 10−7 ◦/s -2.58× 10−7 ◦/s

where f is a positive scaling parameter. When f is greater than one, the charges are overpredicted.
When f is less than one, under-prediction occurs. For this study, the charge product is assumed to
be Q12 = −2.5 × 10−11 C. The reference separation distance is set at Lr = 15 m, and the masses
are md = 500 kg and mT = 2000 kg. Assuming a feedback gain of KL = 5 × 10−7, the scaling
parameter f is swept from under-prediction to over-prediction, and the real equilibria are computed
for each f value. The results are shown in Figure 5. The plot is divided into two main regions. The
first is f > 1, which corresponds to the controller over-predicting the craft charges. As expected,
only one equilibrium exists in this region. As the over-prediction becomes more severe, the location
of the equilibrium configuration moves further and further away from the desired nominal position
of L = 15 m. Note that when f = 1, the equilibrium falls exactly at 15 m. This corresponds
to perfect prediction of the craft charges by the controller. When f < 1, the controller is under-
predicting the actual craft charges. The region of under-prediction is subdivided into two different
cases: one with two positive roots, and one with zero positive roots. As f decreases from one,
the larger equilibrium location decreases from 15 meters, and a new equilibrium appears at L = 0
m. This new equilibrium grows from zero as the underprediction becomes more severe, until it
collides with the larger equilibrium and vanishes at approximately f = 0.55. Note that the larger
equilibrium value is stable, while the lower one is unstable. When f is lower than this value, no
positive equilibria exist. This is a dangerous region to be in, as the craft may impact if nothing is
done to prevent a collision.

The example shown here is not intended to represent a specific operational scenario. Rather,
the parameters used to generate the plot were chosen in order to demonstrate all of the possible
behavior that may occur when the charges are improperly modeled. Practically, the gain should be
increased to a level where there is no region in f with zero positive roots. As KL increases, the
width of the yellow region in Figure 5 will increase as well. Likewise, this region will shrink when
KL is decreased. It is advantageous to make this region as large as possible, as it provides a wider
allowable margin of error in predicting the craft charges.

The preceding results are obtained assuming the craft charges are fixed with time. This assump-
tion is made in order to provide analytical insight into the issue of improperly modeled charges. In
the actual system model, the charges change as the distance between the bodies evolves. Unfor-
tunately, including this behavior in the analytical developments precludes the existence of useable
insight. Qualitatively, however, the behavior is the same. The preceding developments provide
a starting point for proper gain selection and potential outcomes that may occur with improperly
modeled charges.

NUMERIC SIMULATION

To illustrate the performance of the developed control system, inertial simulations are used.
Rather than integrating the linearized spherical equations of motion, the full nonlinear equations
of motion, presented as Eqs. (11) and (12), are used. The linearized control developed with spher-
ical coordinates is used to determine uT . The control system is used to raise the semi-major axis
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Table 2. Parameter values used in numeric simulation

Parameter mT md VT Vd RT Rd

Value 500 kg 2000 kg 25 kV -25 kV 2 m 3 m

of the deputy orbit by 300 km, starting at a geosynchronous orbit radius of 42,164 km. Such a sce-
nario is representative of raising a GEO debris object into a super-geosynchronous disposal orbit.
To begin the simulation, the deputy is placed in a circular orbit with radius 42,164 km. The relative
spherical coordinates between the deputy and chief at epoch are shown in Table 1. The parameter
values used in the simulation are summarized in Table 2. The simulation is run until an increase in
the semi-major axis of 300 km is achieved.

For the simulation, the control algorithm is implemented assuming perfect knowledge of the state
and craft voltages. The electrostatic force model described in Eq. (34) is used to model the effects
of the craft charging by means of the position-dependent capacitance model in Eq. (33). Note that
the craft voltages, presented in Table 2, are held constant throughout the simulation. The charges
vary as the relative positions of the craft change during the maneuver according to Eq. (33).

For comparison, a simulation is run where the electrostatic force is not modeled properly; rather,
over-prediction of 10% in the force magnitude is considered. Because the electrostatic force is a
direct function of the charge product of the craft, this is akin to over-predicting the charge product
by 10%. The same parameter values are maintained for both simulations. The case with force over-
prediction is run for the same length of time as the perfect-knowledge simulation. Considering the
analytical developments in the preceding section, it is expected that this scenario will result in an
increase in the separation distance between the craft at steady state relative to the desired nominal
position.

In the control system, desired values of the spherical coordinates are needed. The target values
will affect the maneuver in several different ways. Considering first the effects of the separation
distance L, the maneuver time can be significantly impacted. The thrust magnitude at steady state
implemented on the tugging craft is a direct function of the electrostatic force between the craft.
If the craft are 5 meters apart, for example, this force is significantly larger than if the craft are
50 meters apart. Because the thrust is a direction function of the electrostatic force, larger thrust
magnitudes are possible when the craft are held at smaller separation distances. Larger thrust mag-
nitudes enable the semi-major axis of the orbit to be increased at a more rapid rate. These effects
are described in further detail in Reference 10, where Gauss’ variational equations are used to de-
termine how quickly a deputy object’s semi-major axis may be increased using electrostatic forces.
Next, the effects of the angles θ and φ are considered. When both of these angles are held at zero,
the deputy will follow the chief in the orbit track. When θ in non-zero and φ is zero, both deputy
and chief occupy the same orbit plane. In this case, planar orbit maneuvers are possible, where
the deputy orbit semi-major axis, eccentricity, and argument of perigee may be modified. When φ
is non-zero, the deputy and chief are no longer in the same orbit plane. In this configuration, the
deputy orbit inclination and right ascension of the ascending node may be modified, in addition to
the other orbital elements. In the current study, a planar orbit raising maneuver is considered. As
such, the values targeted by the controller are set at L=12.5 meters, θ = φ = 0o. Note that this
corresponds to the chief at 12.5 meters ahead of the deputy in the along-track direction.

To achieve the desired semi-major axis increase, slightly more than 61 days are required when
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Figure 6. Changes in a) semi-major axis and b) eccentricity of deputy object through-
out the maneuver.

perfect knowledge of the electrostatic force is available. During the same 61 day period, the 10%
error in the electrostatic force magnitude leads to an increase in the semi-major axis of only 211.6
km. The evolution of the semi-major axis and eccentricity of the deputy object during the maneu-
ver is shown in Figure 6. Note that the increase in the semi-major axis is shown, and the trend is
linear. This is attributed to the fact that a constant force is applied to the deputy object in the along
track direction. As such, the rate of increase in the semi-major axis is nearly constant throughout
the duration of the maneuver. The eccentricity spikes early on in the maneuver, then oscillates for
the remainder. This early spike can be attributed to the initial maneuvering of the chief relative to
the deputy. During this early repositioning the force on the deputy is not constant in magnitude
or direction, as the electrostatic force between the craft is changing. Once the steady state relative
position is achieved, the force becomes constant and the oscillation results. The decreased perfor-
mance in the case of force over-prediction is attributed to the steady state conditions achieved by the
controller. When this force is over-predicted, the craft settle into a separation distance larger than
when the force is known perfectly. As a result the tugging force is smaller, which leads to a lower
rate of change for the semi-major axis.

Initially, the deputy and chief are not in the desired relative position. There is a repositioning
of the chief relative to the deputy during the early portion of the maneuver. This is illustrated by
considering the evolution of the spherical coordinates during the first 12 hours, shown in Figure 7.
Using the gain-selection process detailed previously, gains are chosen so that the settling time for
the system is 0.1 days (K = 3.7484 × 10−7 1/s2 and C = 1.1327 × 10−3 1/s). The response
of the system using these gains reveals the desired settling time has been achieved. A slightly
underdamped response is obtained before the chief settles into its steady-state relative position.
When the electrostatic force is modeled exactly, the target is achieved. When the force is over-
predicted by 10%, the desired angles are achieved but the separation distance increases to about 15
m. Once steady-state is achieved in both cases, the relative position is held throughout the duration
of the maneuver. Recall that inertial simulations are used during these simulations. The spherical
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coordinates shown here are obtained by computing the relative position of the craft and then rotating
the result into the appropriate coordinate frame.

Inspection of the spherical coordinate histories reveals the differences in performance between
the two simulated cases. For both simulations the settling time is the same, as are the histories for
the angles θ and φ. This is due to the decoupling between the coordinates in the control system. In
spherical coordinates, the electrostatic force is only present in the L-direction. Thus, the feedback
compensation for the electrostatic force will directly affect only this direction. Indirect effects are
present in the dynamics due to the coupling of the coordinates in the equations of motion. The
control system, however, effectively removes this decoupling by compensating for these dynamics
in the control algorithm. Thus, errors in the electrostatic force model will manifest predominately in
the L-direction with minimal deleterious effects on the desired response for the angles. Still, errors
in the electrostatic force model can cause serious concerns. Here, over-prediction is considered.
In this scenario, the primary effect is that the desired semi-major axis increase will take longer.
A potentially more problematic scenario is when the electrostatic force is under-predicted. If the
controller assumes the magnitude of the electrostatic force is less than it really is, the two craft could
collide.

The magnitude of the thrust on the chief craft is shown in Figure 7(d) for the first part of the
maneuver. Beyond this initial period, the magnitude remains constant at the steady value indicated
on the plot. Note that the steady state value is lower for the charge over-prediction case. This cor-
responds to the fact that the steady-state separation distance is larger for the charge over-prediction
case. As a result, the thrusters do not need as large a magnitude to compensate for the lower electro-
static force than they do when the craft are closer. The effect that this has on the overall maneuver
is a lower tugging force which, in turn, does not increase the semi-major axis as readily as the case
when the electrostatic force is modeled perfectly.

The relative trajectory of the chief with respect to the deputy in the Hill frame is shown in Figure 8
for both cases. The approach trajectory from the initial condition is nearly identical for the case of
perfect charge knowledge and charge over-prediction. This is largely due to the same angle history
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achieved by the controller for both histories (see Figure 7). For a large duration of the repositioning,
the separation distance history is very similar as well. It is only when the craft are within 15 meters
of each other that a deviation occurs. Recall that once steady-state is achieved the relative positions
of the craft remain constant in the Hill frame.

CONCLUSION

In this paper, an autonomous relative navigation control algorithm is proposed for the case when
two charged spacecraft are in close proximity of each other. Denoting one craft as the chief and
the other as the deputy, thrust is applied to the chief to reposition it into a desired relative position
with respect to the deputy. The electrostatic force generated between the craft is then used as a
contactless tug which enables the chief to tow the deputy into a different orbit. Here, a planar
orbit raising maneuver is simulated to test the control algorithm, and improperly modeled charges
are considered. The control algorithm demonstrates its validity by successfully repositioning the
chief and achieving an increase in the deputy semi-major axis of 300 km using an electrostatic
tugging force. When the charges are not modeled properly in the controller, the chief settles into a
separation distance slightly larger than desired. This has minimal impact on the targeted mission,
however; the only significant difference between the cases is the time needed to achieve a semi-
major axis increase of 300 km. The electrostatic tug concept has been validated as a viable means
for reorbiting space objects.
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