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COULOMB SPACECRAFT VOLTAGE STUDY DUE TO
DIFFERENTIAL ORBITAL PERTURBATION

C.C. Romanelli*, A. Natarajanf, H. Schaub?, G.G. Parker’and L.B. King?

The effects of differential atmospheric drag, J» perturbations, and solar radiation
drag on the relative motion of a small formation of satellites is examined. Nonlinear
simulations in the inertial frame are used to determine the worst case differential
orbital perturbations relative to the drifting formation center of mass location. Vary-
ing the nominal separation distances between 10-1000 meters and the altitude from
LEO to GEO, a profile of the dominant perturbation zones is developed. A study
is also provided to compute Lorentz force acceleration of a charged spacecraft in
Earth’s magnetic field. Two formation types are considered when computing nominal
spacecraft voltages to compensate for these perturbations. First, using a traditional
formation flying approach all spacecraft are allowed to interact with each other. Min-
imal charge products are computed to determine the worst expected voltage levels.
Second, a gluon-deputy craft combination is studied. Here a much larger gluon craft
is specifically designed to be able to handle much larger voltages. This allows the
deputies to have lower voltage levels to achieve the same force. A study is performed
to illustrate how the required gluon charge levels will vary with different gluon radii,
as well as different Debye lengths.

INTRODUCTION

The perturbations that many aerospace engineers deal with in normal orbit operations can have
a large effect on the relative motion of two closely orbiting satellites. In Reference [1|a study is done
on the long term effects of perturbations on the DRAIM satellite constellation. The results clearly
indicate that after 10 years, orbit perturbations have a significant effect on the relative motion of this
constellation. However, the goal of this study is to examine the effects of perturbations on formations
on the order of 10 to 1000 meters. The applications range from wide field-of-view interferometry, to
forming virtual structures, to engaging in close proximity flying operations, as well as rendezvous
and docking maneuvers. The traditional control solution would be to use thrusters, which not only
expend a large amount of fuel, but also the exhaust plume produced can damage sensors or delicate
equipment on nearby spacecraft. In Reference |2, the concept of using Coulomb forces to control
satellite formations is investigated. This work determined that spacecraft generating a relative
potential of a few kilo-volts would be sufficient to produce inter-spacecraft forces on the order of
micro- to milli-newtons. This amount of force is enough to continuously control the spacecraft with
a large impulse.

However, there are challenges to using spacecraft charging in this manner. Earth’s ambient plasma
environment can effect the performance of these Coulomb forces. King and Parker® showed that at
higher Earth orbits the Debye length is on the order of 100’s of meters, which allows for a reasonable
environment to use Coulomb forces. However, at low Earth orbits (LEO) the Debye length becomes
much smaller and can greatly effect the charging characteristics of the spacecraft. The Debye length
is a measure of the distance over which charged particles produce Coulomb forces. The shorter the
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Debye length, the more charge is needed to generate the same force. This limitation factor will be
taken into consideration when using Coulomb forces in a wide range of altitudes.

The applications for this type of study can range anywhere from spacecraft docking maneuvers to
large formation keeping. Therefore, an objective of this paper is to determine how to size various
differential perturbations and determine their effects on the relative motion of satellites for a broad
range of applications. To achieve this, perturbation effects are explored at altitudes from LEO to
GEO and separation distances ranging from 10 to 1000 meters. The plasma Debye lengths are
investigated for Coulomb formation flying application for LEO to GEO altitudes. The perturbation
accelerations considered are the effects due to differential J, through Jg, atmospheric drag, and
solar radiation pressure. The relative accelerations due to these perturbations are calculated within
this range to get a measure of the forces needed to compensate for them. What we might expect
to see is a domination of the atmospheric drag forces in lower earth orbit, and then either J, or
solar radiation pressure becoming dominant at higher altitudes. This is then taken one step further
and the charges necessary to generate these forces are also calculated. This allows us to explore the
effects of multiple spacecraft charging and Debye length. However, the overall goal of this paper
is to size these accelerations and associated voltage levels to explore the feasibility of missions that
would take advantage of Coulomb forces in this manner. Two types of Coulomb formation flying are
considered. The first mission types are classical bounded Hill frame formation where the spacecraft
charges are used to compensate for the differential perturbations. Note that in this scenario all
spacecraft are able to interact with each other. The second mission scenario introduces the concept
of a “gluon” chief spacecraft. This craft is designed specifically to charge to very high levels, thus
reducing the deputy charge requirements. As a result, the deputy electrostatic fields are assumed
to not interact with each other. Numerical studies illustrate the required maintenance spacecraft
voltage level to compensate for different types of differential perturbations.

PLASMA PARAMETERS CONCERNING COULOMB THRUSTING

The concept of Debye shielding is fundamental to plasma physics. Qualitatively, Debye shielding
can be viewed as a screening process whereby the mobile charges in a plasma screen out, or spatially
neutralize an immersed test charge. For instance, consider placing a positive point charge within a
plasma. The plasma particles, which exist in a gaseous state, are mobile and will respond to the
presence of the charge: the positive test charge will attract a neighboring cloud of negative charges
while creating a local void of positive charges in its vicinity. When averaged over some region in
space centered on the test charge, the net charge within the specified volume will be zero. As a
result, another test charge placed a long way from this volume will see a cloud with zero net charge
and will thus experience very little electrostatic force from the test charge.

In order to perform Coulomb thrusting between spacecraft it is necessary that the plasma Debye
length be greater than (or at least on the order of) the inter-spacecraft separation. This precludes
the use of Coulomb control in cold, high-density plasmas such as that found in the ionosphere
environment of LEO orbits. A qualitative depiction of the magnetosphere plasma environment
is shown in Figure where the diagonal lines represent constant values of Debye length with
plasma density and temperature indicated on the axes. For approximate values, the Heidelberg
Dust Research group has compiled a convenient set of representative plasma parametersﬂ that are
repeated in Table

It is apparent from Figure[I]and Table[I]that the only feasible regime for inter- spacecraft Coulomb
thrusting with contemporary-sized vehicles is the outer magnetosphere/GEO orbital environment.
The centimeter-scale Debye lengths inside the plasmasphere render electrostatic interaction between
vehicles negligible except at very small separation distances.

Thttp://www.mpi-hd.mpg.de/dustgroup/~graps/earth/magnetosphere.html
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Figure 1. Plasma regimes of the Earths magnetosphere. Red diagonal lines indicate
constant values of Debye length.

Table 1. Plasma properties in the vicinity of Earth

Density Temperature Debye
Region Altitude (m—3) (eV) Length (m)
Tonosphere 1R, 10'1-1012 0.02-0.2 0.01-0.03
Plasmasphere® 1-5 R, 10°-10™° 0.2-1.2 0.03-0.26
GEO/Outer 5-10 R, 5-10°-107 1,000-3,000 75-575
Mangetosphere®
Plasmasheet 10-15 R, sunward 5.10°-8 - 10° 1,700-25,000 340-1,600
Magnetotail* 10-100’s R, anti-sunward
Solar Wind® Outside magnetosphere | 3-10%-9-10° 10-100 843

ORBITAL DISTURBANCES OF SPACECRAFT CLUSTERS

This section discusses the expected disturbance levels that a cluster of spacecraft will experience.
The orbit altitudes will range from Low Earth Orbit (LEO) to Geostationary Earth Orbits (GEO),
while the spacecraft separation distances vary between 10 and 1000 meters. In particular, the worst
case accelerations relative to the spacecraft cluster/formation center of mass are of interest. This
information will then be used to determine minimum required maintenance charge/voltage levels to
be able to compensate for these disturbances.

Relative Acceleration Magnitudes

To study the relative motion of spacecraft in nearly circular orbits, the Clohessy-Wiltshire-Hill
equations are commonly used & These equations linearize the relative motion dynamics with
respect to a constantly rotating reference frame. They have a well-known analytical solution to the
unperturbed motion which decouples the in-plane and out of orbit plane motions. The CW equa-
tions are very convenient to develop rendezvous and near-circular formation flying control laws 1oL
With traditional spacecraft formation flying concepts, each craft contains its own inertial propulsion
system, typically a high efficiency ion engine. As relative motion errors are detected, the thruster is
used to correct the motion with respect to the rotating Hill frame.



However, the Coulomb thrusting concept acts very differently. Here the spacecraft push and
pull off each other to control the relative motion. The inertial orbit of the cluster is of secondary
importance compared to the formation shape and is not compensated for with Coulomb thrusting.
Thus, to determine the necessary relative orbit maintenance charge/voltage levels to compensate for
differential perturbations, it is essential that the drift of the formation center of mass (Hill frame
origin) is taken into account.

Deput,
Saftellite

Deputy
Inertial Orbit

Chief Tnertial Orbit

Figure 2. Diagram of the Relative Motion Problem

In order to avoid the linearization and constant orbit rate issues of the CW equations, we have
chosen to use a full non-linear simulation of the spacecraft with the perturbations included as inertial
acceleration vectors. Figure 2] describes the set-up of the relative motion problem and the notation
to be used in the rest of this report. Let there be N charged spacecraft present. The inertial position
vectors of the satellites is given by 7;, while

1 N
Te = M Zlml’f'z (1)

is the formation inertial center of mass vector. Here M is the total system mass and m; is the mass
of the i, spacecraft.

The Hill frame unit direction vectors H : {%,, 2,25} are defined through:

. T Te X Te

1, =

29 = 1n X U = ————
Te |re X 7]
In the CW equations, this frame is treated as having a constant rotation rate. However, in this
differential disturbance study the actual 7 is taken into account. The rotation matrix [HN], which
will rotate vector components taken with respect to the inertial frame to vector components taken
with respect to the the Hill frame, is defined as
O &
[HN] = [2r 29 i) (2)
Defining the relative position vector as p; = r; — 7, this vector can be mapped between inertial and
Hill frame vector components using "p; = [HN] Vp;.

The inertial equations of motion of a satellite are given by

o H
P = —r?m + aq, (3)



where ag, is the disturbance acceleration acting on the i'" satellite. Of interest is how this
disturbance acceleration will influence the motion of the satellite relative to the formation/cluster
center of mass r.. In particular, we take into account here that r. itself will also be influenced
by the disturbance. For example, if both satellites are experiencing the same atmospheric drag,
then the differential disturbance would be zero because the center of mass is being disturbed by the
same amount as the satellites. Similarly, if one satellite has twice the disturbance drag acceleration
compared to the 2nd craft, then each craft would only have to compensate for half of this drag
(assuming equal masses).

Equation is used to perform the numerical simulations. Any Hill-frame specific initial condi-
tions are first mapped into the inertial frame to start the simulation. The inertial acceleration is
written as

T = Tc+ P (4)

Next, let f)z be the inertial relative acceleration if no disturbance accelerations are present (Keplerian
motion case).

51’ = 721 - ';A;c (5)
Here f'l and %C are defined as follows:
53 u
r; = —?’I‘i (6)
; 1M
Te= M ; m;rT; (7)

Thus the ~ quantities are the unperturbed accelerations of the Keplerian relative motion case. Using
Eq. to integrate the satellite inertial position vectors, at any instant of time the 7;(t) will be
available during post-processing, and these local “unperturbed” states can be computed.

Next, the relative inertial acceleration can be written as p; = f)l + §p; where we separate the
naturally occurring relative acceleration from the relative acceleration due to the perturbation forces.
Solving for the differential disturbance acceleration vector §p; we find

8p; = ¥ — Fe — P (8)

To be able to maintain a cluster or formation of charged spacecraft, the spacecraft charging capa-
bilities must be large enough to be able to compensate for the worst case differential disturbance
acceleration dp; which will be encountered for a particular orbit altitude and formation size. With
each orbital disturbance type the differential disturbance acceleration is computed. These worst
case disturbance acceleration values are then used in the next section to compute required minimum
spacecraft charge/voltage levels to compensate for this disturbance.

Differential Gravitational Zonal Harmonics

The Jy through Jg perturbations arise from the fact that the Earth is not a perfect sphere, but
rather ellipsoidal in shape. Of these gravitational disturbances, the 2°4 order zonal harmonic, called
the J, term, is about three orders of magnitude larger than the remaining harmonics. It provides the
dominant formation flying perturbation for spacecraft of equal type and build 2 These formation
flying spacecraft are typically envisioned to be flying about 1 km apart, or further™ However,
for the Coulomb thrusting concept study, much smaller separation distances are considered. With
these smaller separation distances the differential Jo influence will become ever smaller. Of interest
is how these differential accelerations compare to other orbital perturbations such as differential
atmospheric drag and differential solar radiation pressure.



The inertial disturbance acceleration vector due to Jy through Jg can be modelled as direct
functions of inertial position and the first six zonal harmonics. However, only the first zonal harmonic
has a significant contribution for this study and is expressed as
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Here rq is the equatorial radius of the Earth and p is the gravitational constant of the Earth. The

variables X, Y, and Z are the position coordinates with respect to the ECI (Earth Centered Inertial)
frame and the orbit radius is r = VX2 + Y2 + Z2.

The magnitude of the J; induced relative motion disturbance depends on how the relative or-
bit is formed (wether the out-of-plane motion is achieved through inclination or ascending node
differences), and on the location (anomaly angle) within the orbit 2215 This study is based on
investigating worst case scenarios to determine minimum spacecraft charge sizing requirements. The
radar interferometry problem was of particular interest to this project. Here the desired relative
orbits have circular projections relative to the local horizontal plane (Zp—2; plane). Let a relative
position vector be written using Hill frame vector components as

p = Tt + yig + 223 (10)

The analytical solution to the CW equations shows that all bounded relative orbits with a circular
chief must satisfy 2

z(t) = Ag cos (nt + «) (11)
y(t) = —2Ag sin (nt + ) (12)
z(t) = Bocos (nt + () (13)

where Ag and By are relative orbit amplitudes, while « and 3 are phase angles of the relative motion.

The parameter n = /u/ rcg is the chief’s mean orbit rate. To achieve the circular projection of the
relative motion in the local horizontal plane, the initial orbit must be setup such that By = 24y,
and either & = 3 or &« = B+ 72 To determine the worst case differential J, accelerations, a quick
study is preformed where the phase « is swept across all possible values. All orbits are initialized
as they cross the equator. When « is initially either 90 or 270 degrees produces a slightly larger
acceleration compared to any other initial angle over an orbit period. Thus, to determine the worst
case differential J, disturbance acceleration, these initial conditions are used to setup two satellites
and then integrate the inertial equations of motion for one orbit. The worst differential acceleration
is then recorded for the particular orbit altitude and relative orbit size.

Figure illustrates the maximum differential .J; accelerations in units of log;,(m/s?). The altitude
(horizontal axis) is swept form LEO (300 to 1000 km) to GEO (35,000 km). The separation distances
(the Ag parameter in Eq. ) is swept from 10 — 1000 meters. The chief orbit is initially set to
be a circle in each case. The coutour plots illustrate the resulting maximum differential Jo induced
accelerations that were encountered. Three cases are illustrated for chief inclination angles of 0, 45
and 90 degrees. As expected, the differential Jo perturbations increase with increasing formation
size and with decreasing orbit altitude. As the orbit inclinations are increased, the resulting worst
cases differential accelerations increase slightly, but not substantially.

Differential Atmospheric Perturbations

The next perturbation to examine is the drag force due to the atmosphere. This effect will be
dominant in the low earth orbit altitudes and become negligible at higher altitudes. The magnitude
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Figure 4. Contour Plots of Differential Atmospheric Drag Acceleration in
log;(m/s?) vs. Separation Distance and Altitude
of acceleration due to atmospheric drag is modeled as?
1 2
ap = —ip(CdA/m)V (14)

Here p is the atmospheric density, Cp is the coefficient of drag, A is the satellite’s cross-sectional
area, and V is the current inertial velocity of the spacecraft. The drag force acts in the opposite
direction of velocity:?

T;

T

Q. (15)

i

= adi'iv = aq

The atmospheric density model used is the United States Standard Atmosphere Model from 1976.
The actual model contains density data for altitudes ranging from 86 to 1000 km. Above this range
it is assumed that density becomes very close to zero and the drag force is non-existent T8

The next two variables to model in Eq. are the coefficient of drag C; and the cross-sectional
area A. For the purpose of sizing the value of Cy, a general cylindrical shape is considered for
the spacecraft rather than the previous spherical model. If spherical spacecraft of equal mass are
considered, then the differential atmospheric draft would be trivially zero. However, in the cylindrical
spacecraft case the attitude of the spacecraft will have an influence on the C; value. This aspect
allows us to study differential drag for two or more satellites in a formation. The next step is to
estimate the value for Cy for worst and best case scenarios based on exsiting data on an actual
spacecraft. In Reference 17| there is one specific craft, Intercosmos-16, which is a scientific spacecraft
with a cylindrical shape and no solar panels. The data table on its drag properties has a C; for
maximum cross-sectional area of 2.67 and for minimum cross-sectional area that value drops to
2.1. This data gives us a sufficient range of Cy values to use in our study of differential drag on a
formation of satellites. For our differential atmospheric drag simulations we chose the typical craft
configurations with a mass of 50 kg craft, while the radius is 0.5 meters and a height equal to three
times the radius. This provides our numerical simulation with realistic spacecraft parameters to
study a worst case scenario for differential drag forces on relative motion.



Figure [] illustrates the computed differential atmospheric drag accelerations for LEO to GEO
orbit, with the separation distances ranging from 10-1000 meters. Because all satellites are essen-
tially in circular orbits (as seen by inertial frame), the inertial velocity is essentially constant here.
Thus, the differential atmospheric disturbance will not depend on the spacecraft separation distance.
Rather, it only depends on the orbit altitude. Note that the Standard atmosphere model used only
provided data up to a height of 1000 meters. Beyond that the atmosphere is modeled to simply
decay to zero exponentially.

Differential Solar Radiation Pressure

Solar radiation drag is created by having the sun’s light reflect off the spacecraft. Through
momentum conservation, a small force is exerted onto the craft. The magnitude of this force depends
on the apparent size and reflectivity of the spacecraft. To model the solar radiation pressure we will
use a spherical spacecraft model. The equation for this model is shown below:®

APR
apr = _CRW (16)

Where A is the cross-sectional area facing the sun, and & is the solar constant. Also, m is the
spacecraft mass, c¢ is the speed of light, and Cg is the pressure radiation coefficient. Lastly, the
vector R is the inertial vector pointing from the sun to the planet you are orbiting in AU, while R
is simply its magnitude. In this part of the equation, it is assumed that there is a quadratic drop
in radiation pressure as you increase your distance past 1 AU, which is the distance from the Earth
to the Sun. Without loss of generality, for our simulation we will choose a vector in vernal equinox
direction. The motion of all satellites considered is insignificant here compared to the size of the
Earth/Sun inertial position vector.

The other variables in the equation are simply constants. For cross-sectional area A and mass
m, the same values are used as for the atmospheric drag force calculation. The pressure radiation
coefficient is taken to be Cr = 1.3 from the average value based on recent data*¥ The solar
constant @ is 1372.5398 W/m? and the speed of light is ¢ =2.997 m/s. The worst case differential
solar radiation drag is found to be about 107> m/s?. This value is the same for different orbit
altitudes and spacecraft separation distances.

Overview of Dominant Perturbations Zones

The previous three sections discussed the differential perturbations due to J; perturbations, at-
mospheric drag, as well as solar radiation drag. In all cases the craft are assumed to have a mass
of m = 50 kg, and a nominal radius of 0.5 meter. Figure p| provides an overview of altitude and
separation distance zones showing which perturbation is the most significant for a particular zone.
Traditional formation flying applications treat the Jo perturbation as the dominant disturbance of
the formation geometry1%2%2l Here the craft are assumed to be of equal type and build. However,
even if all craft have the same shape, different orientations can cause significant differential atmo-
spheric drag in LEO regimes. Figure [§] shows that for conditions used in this study, the differential
atmospheric drag will dominate at LEO up to separation distances of 350 meters. As the orbit
altitude is increased to about 500 km, the differential atmospheric drag dominant zones vanish.
For large separation distances at LEO the differential Jy perturbation becomes dominant, even if
differential spacecraft attitudes are considered. This tendency is expected because the differential
Jo perturbation increases with separation distance, while the differential atmospheric drag does not.

As the considered orbit altitudes are increased to Medium Earth Orbits (MEO) and geostation-
ary orbits (GEQO), the differential J5 perturbation is decreased. The further away from Earth the
spacecraft is, the more the Earth’s gravitational potential begins to resemble that of a point-mass.
Past an altitude of 2000 km, the differential solar radiation pressure starts to become the dominant
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Figure 5. Dominant Differential Perturbation Zones Illustration.

perturbation at low separation distances. At high Earth orbit regions above 10,000 km, which will
typically be considered in this study for charged spacecraft missions, the differential solar radiation
pressure is the largest perturbation even out to 1000 meter separation distances.

Earth Magnetic Lorentz Force

Lastly we want to explore the effects of Earth’s magnetic field on our spacecraft. Because we will
be generating a significant amount of charge or voltage to compensate for these orbital disturbances,
that charge will in turn create an acceleration due to Earth’s magnetic field. This acceleration or
force is known as the Lorentz Force and is written in equation [I7] from basic physics.

F=q7xB (17)

In this equation g is the charge generated by the craft in Coulombs, 7 is the inertial velocity vector
of the spacecraft in m/s, and B is the inertial magnetic field vector of the Earth in units of Tesla.
The Earth’s magnetic field generally resembles the field around a magnetized sphere, or a tilted
dipole. As of 1999, the dipole axis was tilted approximately 11.5° from the spin axis, and drifting
approximately 0.2°/yr. Its strength at the Earths surface varies from approximately 30000nT near
the equator to 60000nT near the poles. Further, there exists a low magnetic intensity field at
approximately 25° S and 45° W known as the Brazilian Anomaly. A high exists at 10° N and
100° E, and the two of these together suggest that not only is the dipole axis tilted, but it does
not quite pass through the center of the Earth2Z The accepted model for Earth’s magnetic field
is the International Geomagnetic Reference Field, put forth by the International Association of
Geomagnetism and Aeronomy (IAGA). An overview of this model can be found on the website of
the TAGAs Working Group V-MODf]

For a reference case, we pick a longitude of about -100 degrees and a latitude of 10 degrees,
the Brazilian Anomaly. As the orbit altitude is swept, the magnetic field strength is computed

2Ihttp: //www.ngdc.noaa.gov/IAGA/vmod/igrf. htm1|
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Figure 6. Contour Plots of Acceleration in log;(m/s?) vs. Voltage and Altitude
over the 10° N and 100° E Location.

for altitudes over this location to determine worst case conditions. The velocity vector 7 is to
be taken as the circular velocity at the given altitude. Lastly, the voltage of the spacecraft and
the orbit altitude are swept. The altitude range will be the same as for the previous disturbance
acceleration cases. The voltage will be swept from 10" to 108 volts in order to supply force data for
a broad range of voltages. The Lorentz acceleration for a 50 kg craft is then plotted in Figure [f]
From the figure we can see that for reasonable voltages on the order of kilovolts to hundreds of
kilovolts, the spacecraft will experience accelerations about two orders of magnitude below the
expected disturbance accelerations due to the perturbations. This suggests that even though this
force is small, it is still there and must be considered in higher fidelity simulations. Also notice that
the accelerations become relatively high when the voltage increases to 10® volts, even higher than
the disturbance accelerations. This can become a factor if the craft are relatively far apart and a
much higher voltage is needed to compensate for a disturbance.

REQUIRED SPACECRAFT CHARGE LEVELS

This section investigates the minimum required spacecraft charge levels necessary to compensate
for the differential orbital perturbations. Any feedback charge control strategy would require at
least this charge level to compensate for the disturbances, and additional charge to perform orbit
corrections.

Spacecraft Voltage Computation

The charges ¢; are the physical quantities which determine the Coulomb force magnitude 23 How-
ever, when implementing such spacecraft charges, the technical concern will be the charge density
(voltage) across the craft. The higher the voltage, the more challenging it will be to implement any
charge control law. Thus, this study evaluates what the necessary spacecraft voltages/charge levels
are to compensate for differential orbital perturbations. Note that the Coulomb forces are not sized
here to compensate for the total orbital perturbation. In fact, it is impossible to change the inertial
momentum of the charged satellite cluster using internal Coulomb forces. Rather, the Coulomb

11



Figure 7. Coulomb Spacecraft Formation Illustration

forces are sized such that they will be able to compensate for the differential perturbations which
would cause the formation to change shape, size or orientation.

Unless noted otherwise, the typical spacecraft is assumed to be spherical in shape, have a radius
of r = 0.5 meters, and a mass of m = 50 kg. The differential perturbation levels are taken from the
conservative worst case results discussed in the previous section. Once a required spacecraft charge
¢; is computed, then the equivalent spacecraft voltage is evaluated using

qi
i:kc* 1
Vi = k2 (18)

where k. is the Coulomb’s constant. This formula assumes the charge is homogeneously distributed
across a sphere of radius r. How to compute the required spacecraft charge g; levels depends on the
mission scenario being considered.

Free-Flying Formation Concept

Formation Description

Let us first consider a mission scenario where all charged spacecraft are flying within each others
electrostatic spheres of influences. The spacecraft formation is designed such that the nominal
geometry are control-free solutions of the relative equations of motion. Any formation flying errors
relative to the formation center of mass will then be controlled using the electrostatic (Coulomb)
forces. For example, consider the typical formation flying configuration where all the satellites are
flying in bounded elliptical relative orbits with circular projections in the local horizontal plane. If
the relative orbit dimension is reduced to dozens to hundreds of meters, then the electrostatic field
of one satellite will influence the motion of all other craft within this formation. In this scenario a
single craft is able to interact with all other formation craft to produce the required Coulomb force.

Let n = /p/a3 be the mean orbital rate of the circular chief motion, then the CW equations are
given by {789

& —2ny — 3n’r = a, (19a)

T+ 2nk = oy (19b)

F4n?z=a, (19¢)
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If only Coulomb forces are perturbing the Keplerian orbital motion, then the disturbance acceleration
vector av is given by

H (&% N
x 1 Pij
o= o _ kc Q’Lq_] "6_ )\; (20)
Y M 3 Pij
a; b =L Y

where p;; = p; — p;. The purpose of this study is to investigate necessary spacecraft charge levels
to compensate for differential orbital perturbations. The nominal formation geometry is assumed
to be a control free solution. Analytical solutions to the CW equations are well known and have
been applied to the formation flying problem 22326101 Control free solutions of relative orbits
exploiting the mean Js perturbations are discussed in References [19|2327. To size the minimum
spacecraft charge level to maintain a formation shape, the magnitude of the local differential orbital
perturbations must be considered. Note that any final feedback strategy would require charge levels
higher than those discussed in this section.

Minimum Maintenance Voltage Computation

To compute the worst case spacecraft voltage to compensate for differential orbital perturbations,
we study the disturbance accelerations acting on a single spacecraft within this formation over one
orbit period. Assume the formation contains N spacecraft of essentially equal type and build. Let
us define the L(IN — 1) dimensional vector charge product vector Q as

Q=(Qun Qi - Qiy - Qz’N)T (21)

with ¢ # j and where Q;; = ¢;¢;. The parameters ¢; and g; are the charge levels of the ith and jth
spacecraft respectively. Further, let us define the 3 x L matrix [A(t)] as

Pil Pij PiN

T 8L - -

[AQ)] = [’;ge S BeTRa . ye Ad]
)

(22)

with ¢ # j. Note that the space plasma influence of the electrostatic field generation has been
Pij

included in this [A(t)] definition as the exponential term, e *¢ , where A4 is the Debye length. The
actual control acceleration o; experienced by the i*" spacecraft is

a; = ——I[A(1))Q (23)

Thus, to compensate for the disturbance acceleration ag4, we set it equal to the control acceleration
and solve for the charge product vector Q.

Q= - 1A ay (24)

Note that this disturbance acceleration is computed relative to the drifting formation center of mass
as outlined earlier. Using the pseudo-inverse of the rectangular matrix [A(¢)] provides the minimum
norm solution of the charge product vector. The charge of the i*"" spacecraft whose relative motion

is being control is computed using
g = \/max(|Qi;]) (25)

Numerical Sweeps of Maintenance Voltage

To parameterize a family of Coulomb formation, the following scenario is used. Keeping space-
based radar interferometry missions in mind, the analytical solution to the CW equations in Eq.
are used to setup a Coulomb formation of N craft. In particular, the circular projection condition
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By = 2Ay and « = [ is enforced to yield circular formations as seen by an Earth observer. The N
craft are spaced equally along the relative orbit. The constant separation angle is ¢ = 27/N.

To determine the disturbance acceleration aq on the i*" craft, this craft is allowed to perform

a complete orbit about the Earth. The N — 1 remaining satellites are held in equivalent relative
orbit positions compared to this i*" craft to maintain the constant separation angles ¢. Thus,
at any instance in this simulation, the formation geometry satisfies the linearized bounded motion
conditions. As the craft of interest completes its orbit, the true inertial position vectors r; computed
for all craft to determine the differential perturbation accelerations relative to the drifting formation
center of mass. For a given orbit size (determined through Ag) and orbit altitude), the corresponding
maximum required voltage is recorded.

The expected mean Debye lengths at different orbit altitudes were discussed in an earlier section.
The only regions which are found to be feasible for Coulomb spacecraft formation flying were orbit
radii greater than about 6 R, up to GEO altitudes. Inside this radius the Van Allen radiation belts,
as well as the dense, cold plasma environments of LEO altitudes yielded extremely small Debye
lengths of millimeters to centimeters. Outside the Van Allen radiation belts the Debye length were
found to vary from 100 meters up to 500-1000 meters, depending on the solar activities.

To perform numerical sweeps of required spacecraft voltage levels to compensate for differential
orbital perturbations, all simulations use a GEO altitude. At lower HEO altitudes the Debye lengths
are found to be very similar to the GEO altitude Debye lengths. Thus, numerical sweeps are
performed where the Debye length is varied, as well as the formation size. At HEO altitudes the
differential atmospheric disturbance are negligible. While the differential solar radiation pressure
is the largest, the differential Jy perturbations were included in these sweeps as well. Figure
illustrates contour plots of the resulting required spacecraft voltages. The results show that for
separation distance of dozens of meters, the required voltages for the 0.5 meter radius craft is in the
10’s of kilovolt level. To compensate for the separation distances of 100’s of meters, the required
voltage quickly increase into 100’s of kilovolt levels. And lastly, the Debye length effect will cause
the voltage levels to spike even higher at these separation distances to the hundred thousand’s of
kilovolts.

Gluon Spacecraft Concept

Formation Description

Next we discuss a satellite formation in which there is a massive satellite in the center, called a
gluon. The deputy satellites are assumed to be in a bounded relative orbit around the Gluon or
chief satellite. The main idea behind this type of formation is to have a dedicated gluon which can
charge up to very high values. As a result, the deputy satellites can achieve a given inter-satellite
control force using a much smaller charge level. The gluon is also much heavier and larger in size
than the deputy. Because the deputy charge levels are relatively small, their mutual interactions
can be neglected for 15 order control studies. This contrasts with the very coupled and complex
dynamics of the previously discussed Coulomb formations.

In order to accommodate high charge and still stay within an acceptable level of voltage, the gluon
will have a large surface area. Due to the significant difference in mass and surface area between
the gluon and deputy satellite, the solar drag, Jo effect and atmospheric drag experienced by them
will be different. In this section we study the effect of this differential drag and differential Js effect,
and find the approximate magnitude of Coulomb force needed to compensate for this drag.

Gluon Spacecraft Layout

For this study, we consider only one deputy satellite and gluon. The gluon has a constant core
mass and a large shell, supported by 8 thin cylindrical columns. The large shell helps in distributing
the charge, thus reducing the voltage. The shell and its support structure are assumed to be made of
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Figure 8. Contour Plots of Voltage in log;,(V) vs. Formation Size (A) and Debye
Length for All Differential Perturbations. The Formation Consists of 2, 4 and 5
Craft at GEO.
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Aluminum (or any light metal). The deputy satellite is assumed to be spherical with a fixed radius
r1 and mass mi. Note, the size of the shell in the gluon is varied as part of the study. Hence, the
mass of the gluon is not fixed and depends on the radius of the craft

ma =me + (827, (ra — 1) Ap] + 47rrSAS) Pal (26)

Here 5, 1. and rj, are the radii of the shell, core mass and thin cylindrical columns, respectively. Ag
and Ay, denote the thickness of the shell and cylindrical column, and pg; is the density of Aluminum.

Voltage Requirements

In this section, we find an expression for the amount of Coulomb force which will keep the formation
from drifting due to the differential perturbation. The voltages on the gluon and deputy can be
calculated from the magnitude of the Coulomb force required. Consider the Figure [9] let Fy and
F, be the external disturbance force acting on the deputy and gluon, respectively, and Fg be the
Coulomb force. The equation of motion of the two satellites are given as

FQ+F1 :mli‘l :ml(rc+p1) (27&)
—FQ + Fy = mory = mg(fc + pg) (27b)

where 7. is the inertial position vector of the center of mass, and, p; and ps are the position vectors
of the deputy and gluon with respect to the center of mass, respectively.

Gluon Satellite

Fy

Deputy Satellite
my

Inertial Coordinate Frame

Figure 9. A simple gluon and deputy satellite illustration.

The net effect of the Coulomb forces on the center of mass is zero and its equation of motion is
given by

(m1 + mg)’i’:c =F + F (28)

In order to keep the formation from drifting, we should generate a Coulomb force Fg, which will
make gy and ps go to zero. By setting p; as zero in Eq. (27a) and solving for Fp, we get

FQ = —F1 + mﬂ"l (29)
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In Eq. , Substituting for F} from the center of mass equation in Eq. , we get

mo mq
Fop=— F, + F: 30
Q mi + mo ! mi + mo 2 ( )

The external forces, F} and Fy, in Eq. can be rewritten in terms of acceleration as

mims

Fy = (az — a1) (31)

my + ma
where, as and ao are the inertial accelerations due to the external disturbance force. By writing
out the full expression for the Coulomb force in Eq. and equating the magnitudes of the force,
we get

k Q1(I2€(%j) mims 39
¢ d2 o mi +m2ad ( )

where aq is the differential acceleration, A4 is the Debye length, d is the separation distance between
the satellites and, ¢; and ¢y are the charges of deputy and gluon respectively. By using the voltage-
charge relationship in Eq. we rewrite Eq. [32] as

(57)
riraViVoe\r/  mymg
ked? n m1 + mo

aq (33)

In general, the voltage on the gluon will be fixed and the voltage on the deputy will be varied to
compensate for the differential drag. But, in this paper we have fixed the voltage of the deputy
as 10 kV (maximum permissible) and varied the gluon voltage to see if it is below the available
voltage. This is because the gluon size has not been fixed and we are interested in studying the
gluon voltage-size and differential perturbation-size relationships. Solving Eq. 33| for V5, we get

mimso kcd2ad
V2= (m +m ) (52) (34)
1 2 T17‘2V16 Ad

Differential Perturbations and Associated Voltages for Variable Gluon Radius

Both the deputy satellite and gluon experience perturbations due to solar drag, atmospheric drag
and Jy effect. But, these perturbations are not equal in magnitude and cause a net force which
may result in the drifting of the satellite formation. This differential perturbation depends on the
mass, surface area and separation distance between the gluon and deputy. In an effort to study this
dependence, we vary the gluon radius and separation distance and study the resulting differential
perturbation. Due to similar Debye length limitations, the satellites are assumed to at GEO (fixed
altitude of 35000 m).

Contours of voltage V5 needed on the gluon to compensate for the differential solar drag, assuming
a fixed deputy voltage V7 (10 kV) is shown in Figure Even though the differential solar
radiation drag is less for smaller gluon radii, the voltage needed will increase because the smaller
radii causes a higher charge density. After reaching a low around the 5 meter radius, there is a gentle
increase in required voltage needed due to the increasing differential solar radiation perturbation.
Contours of required gluon voltage V2 needed to compensate for the differential J; effect, assuming
a fixed deputy voltage V; (10 kV), is shown in Figure The voltage needed increases with
separation distance and gently decreases with increasing gluon radii.

In Figure [11] the required Gluon voltage levels are computed to allow the 10 kV charged deputy
to compensate for all differential orbital perturbations acting on it at GEO. The Debye lengths are
varied to illustrate the gluon voltages at different HEO plasma level conditions. For craft flying up
to 30 meters apart, the voltages rise up to kV levels. As the Debye lengths are reduced, the voltage
increase even further.
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Figure 10. Differential Perturbations at GEO (fixed altitude of 35000 km and a
Debye length of 500 meters). All values are logy of voltages.

CONCLUSION

In this paper we examine the effects of several types of perturbations on the relative motion
of closely-flying satellites. The worst case differential accelerations are estimated relative to the
drifting formation center of mass for J, atmospheric and solar radiation drag cases. In particular,
very small separation distances ranging from 10-1000 meters are considered from LEO to GEO
altitudes. The results illustrate that differential solar radiation drag will be the most significant
differential perturbation at higher Earth orbits for Coulomb spacecraft.

Studying the Lorentz force, we observed that accelerations due to the Earth’s magnetic field and a
spacecraft charge will be less than most of the perturbations for high Earth orbits, but can become a
significant force if the spacecraft charges grow too large. Further, a study is performed to investigate
minimum required spacecraft charged to compensate for these differential perturbations. Two cases
are considered. First, all craft are aligned in a traditional bounded Hill frame formation and allowed
to interact with each other. Second, the case is considered where a large gluon spacecraft is created
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Figure 11. Voltage V5 needed on gluon to compensate for all the differential per-
turbations with a Gluon radius of 10 meters. All values are logio of voltages.

which is capable of achieving high voltages. Here the deputy spacecraft will only interact with the
gluon spacecraft. Numerical studies illustrated expected orbit maintenance voltage levels. For orbits
with dozens of meters separation distances the craft must charge up to kilovolt levels.
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