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LINEAR DYNAMICS AND STABILITY ANALYSIS OF A
COULOMB TETHER FORMATION

Arun Natarajan∗ and Hanspeter Schaub†

The linear dynamics and stability analysis of a Coulomb tether formation is
investigated. Here the relative distance between two satellites is controlled
using electrostatic Coulomb forces. A charge feedback law is introduced to
stabilize the relative distance between the satellites to a constant value. The
two craft as being connected by an electrostatic tether which is capable of both
tensile and compressive forces. As a result, the two-craft formation will essen-
tially act as a long, slender near-rigid body. Inter-spacecraft Coulomb forces
cannot influence the inertial angular momentum of this formation. However,
the gravity gradient effect can be exploited to stabilize the attitude of this
Coulomb tether formation about an orbit nadir direction. The Coulomb tether
has been modeled as a massless, elastic component. The elastic strength of
this connection is controlled through a spacecraft charge control law.

INTRODUCTION

The concept of formation flying using electrostatic propulsion was introduced in Refer-
ences 1–3. The electrostatic (Coulomb) charge of spacecraft is varied by active emission of
either negative electric charges (electrons) or positive electric charges (ions). The resulting
changes in inter-spacecraft Coulomb forces are used to control the relative motion of the
spacecraft. This novel concept of propellantless relative navigation control has many advan-
tages over conventional thrusters like ion engines. For example, this method of propulsion
has been shown to require essentially no consumables, require very little electric power
to operate (often less than 1 Watt), and can be controlled with a very high bandwidth
(zero to maximum charge transition times are of the order of milli-seconds). Thus, this
propulsion concept could enable high precision formation flying with separation distances
ranging 10–100 meters. It is also a very clean method of propulsion compared to ion en-
gines, thereby avoiding the thruster plume contamination issue with neighboring satellites.
For the suggested range of separation distances, the plume-impingement problem of high-
efficiency ion engines would be severe. Proposed uses of the Coulomb propulsion concept
include high-accuracy, wide-field-of-view optical interferometry missions at geostationary
altitudes,2 controlling clusters of spacecraft to maintain a bounded shape,3 as well as the
use of drone-worker concept where dedicated craft place a sensor in space using Coulomb
forces.4 This paper introduces a new application of the Coulomb propulsion concept. The
electrostatic force is used to control the separation distance between two physically uncon-
nected craft. Due to the similarities with using a tether cable to connect two craft, this
concept is called a Coulomb tether formation. Note that contrary to traditional tethers, the
Coulomb tether is capable of receiving both tensile and compressive forces. Further, the
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stiffness of the satellite connection can be controlled through feedback control laws. This
will allow for the Coulomb tether stiffness to be varied with changing mission requirements.

While the Coulomb propulsion concept has many exciting advantages, it does come at
the price of greatly increased coupling and nonlinearity of the charged spacecraft equations
of motion. The relative motion of all other neighboring charged craft will be affected by
changing the charge of a single craft. Further, with the Coulomb forces being formation-
internal forces, some constraints are applied to all feasible charged spacecraft motion. In
particular, Coulomb forces cannot be used to change the total inertial formation angular
momentum vector.5,6 As a result, these spacecraft charges cannot be used to reorient a
formation as a whole to a new orientation. An external influence must be used or generated
through thrusters to reorient a Coulomb formation. With the Coulomb tether formation,
we seek to exploit the gravity gradient torque effect that rigid bodies experience in orbit.
Spacecraft do not experience the same gravitational pull on all parts of their body. The
sections which are closer to the Earth are attracted more strongly than those that are
further away. This force or gravity gradient7 has been used in stabilizing some satellites.
To guarantee linear stability of rigid body attitudes in orbit, the principal inertias of the
body must satisfy well-known constraints. Typically gravity-gradient stabilized satellites
are tall and slender, and aligned with the local nadir direction. The same concept of
stabilization can be extended to the two spacecraft Coulomb tether concept where the craft
are assumed to be flying apart by a few dozen meters. By employing a charge feedback law
to stabilize the spacecraft separation distance (making the formation act as a rigid, slender
rod), the gravity gradient torque will assist in stabilizing the formation attitude.

The study of electrostatic charging data of SCATHA spacecraft8 in GEO has shown that
the spacecraft can naturally charge to very high voltages in low plasma environments such
as at GEO. The level of natural charge depends on the current solar activity. Further, this
mission demonstrated that the spacecraft charge could be actively controlled. The Coulomb
propulsion has its own set of limitations, however. The magnitude of Coulomb electrostatic
force is inversely proportional to the square of separation distance, which makes this method
effective only for close formations of the order of 10-100 m, depending on the maximum
allowable level of spacecraft charge. Moreover, if charged plasma particles are present in
the space, the effectiveness of Coulomb force is diminished with the electric field dropping
off exponentially. The severity of this drop is measured using the Debye length.9,10 For low
Earth orbits (LEO), the Debye length is of the order of centimeters, making the Coulomb
formation flying concept impractical. At geostationary orbits (GEO) or higher, where
the plasma environment is milder, the Debye length is about 100-1400 m. The Coulomb
formation flying concepts can be comfortably applied at this altitude. King et. al.1 found
analytical solutions for Hill-frame invariant Coulomb formations. Here spacecraft are placed
at specific location in the rotating Hill frame with specific electrostatic charges. As a result
the Coulomb forces perfectly cancel all natural orbital accelerations, causing the satellites
to remain fixed or static as seen by the Hill frame. However, in this study the charge was
held constant in their analysis. The discovered static Coulomb formations were all found
to be unstable.

Thus, this paper attempts to exploit the known stability characteristics of orbital rigid
body motion under a gravity gradient field and examine its applicability to a Coulomb
tethered two-spacecraft system. To avoid the very small plasma Debye lengths found at
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LEO, the Coulomb tether formation studied will be at GEO. The formation center of
mass or chief motion is assumed to be circular. The paper is organized as follows. After
discussing the charged spacecraft equations of motion, the equations are rewritten using
spherical coordinates and linearized for small departure angles. A feedback charge control
law is introduced to stabilize the separation distance, followed by a combined attitude and
separation distance linear stability analysis. A numerical simulation illustrates the results.
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Figure 1: Rotating Hill Coordinate System Used to Describe the Relative Posi-
tion of the Satellites

STATIC (RIGID) FORMATION DYNAMICS

Let us briefly review the equations of motion of a cluster of charged spacecraft. The
Clohessy-Wiltshire-Hill’s equations11,12 are commonly used for formation studies. These
equations express the linearized motion of one satellite relative to a circularly orbiting
reference point or chief location. Note that this chief location does not have to be actually
occupied by a satellite. For the present discussion, the formation chief location is set to be
equal to the formation center of mass. The various satellites in a formation are called the
deputy satellites. The system of Cartesian coordinates used to describe the relative motion
of a satellite with respect to the chief location is defined in the rotating Hill orbit frame
O : {ôr, ôθ, ôh} as shown in Figure 1. The origin of the coordinate system is chosen to be
the formation center of mass or chief location. The Cartesian x, y and z coordinates are
the vector components of the relative position vector

ρ =

Oxy
z

 (1)

along the orbit nadir, the orbital velocity vector and the normal to the orbit plane respec-
tively. Assuming that the Coulomb formation contains N satellites. The CW equations of
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Figure 2: Coulomb Tethered Two Satellite Formation with the Satellites Aligned
Along the Orbit Nadir Direction

the ith deputy with respect to the chief are expressed as

ẍi − 2Ωẏi − 3Ω2xi =
kc

mi

n∑
j=0

(xi − xj)
|ρi − ρj |3

qiqje
−ρij/λd j 6= i (2a)

ÿi + 2Ωẋi =
kc

mi

n∑
j=0

(yi − yj)
|ρi − ρj |3

qiqje
−ρij/λd j 6= i (2b)

z̈i + Ω2zi =
kc

mi

n∑
j=0

(zi − zj)
|ρi − ρj |3

qiqje
−ρij/λd j 6= i (2c)

where ρi = (xi, yi, zi)T gives the position vector of the ith satellite in Hill frame components,
mi is the satellite mass, qi the satellite charge. The chief position vector rc is assumed to
have a constant orbital rate of Ω =

√
µ/r3c . The parameter kc = 8.99 · 109Nm2/C2 is the

Coulomb’s constant, while the parameter λd is the Debye length. Because the Coulomb
tether formations are assumed to be at GEO where the Debye length is much larger than
the typical Coulomb tether length, the Debye length influence is ignored as a higher order
term for the remainder of the paper. Note that these relative equations of motion of a
charged spacecraft contain linearized orbital dynamics, while retaining the full nonlinear
Coulomb force expression. In fact, it is this very nonlinear Coulomb force term that causes
the strong and complex coupling between the spacecraft motions.

The formation geometry of the ideal 2-craft Coulomb tether formation is shown in Fig-
ure 2. As will be shown later in this section, there exists a 2-craft static Coulomb formation
solution where both masses must be aligned equal distances away from the chief along the
nadir direction. The ideal separation distance is called Lref. If each craft has a certain
charge, then the resulting Coulomb forces will perfectly cancel the linearized orbital accel-
erations in the Hill frame. As a result, the two craft would each remain aligned in the chief
nadir direction and perform non-Keplerian motions. To an external observer the two phys-
ically unconnected craft would appear to both be performing perfectly circular motions,
but with a non-Keplerian orbit period for their individual altitudes. The invisible Coulomb
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tether is applied the required inter-spacecraft force, similar to how a cable tether could
provide the required tension between the craft to maintain such non-Keplerian orbits.

Because the Coulomb tether formation considered only contains two spacecraft, the CW
equations in Eq. (2) for satellite 1 can be simplified to

ẍ1 − 2Ωẏ1 − 3Ω2x1 =
kc

m1

(x1 − x2)
L3

q1q2 (3a)

ÿ1 + 2Ωẋ1 =
kc

m1

(y1 − y2)
L3

q1q2 (3b)

z̈1 + Ω2z1 =
kc

m1

(z1 − z2)
L3

q1q2 (3c)

Because the Hill frame O origin is assumed to be identical to the formation center of mass,
the center of mass constraint dictates that5,6

m1ρ1 +m2ρ2 = 0 (4)

Thus, by controlling the satellite 1 motion, through the center of mass constraint the motion
of the second satellite is also determined.

In order for this top-down spacecraft formation to remain statically fixed relative to the
orbit frame O, the CW equations in Eq. (3) must be satisfied with zero initial velocity and
acceleration for each vehicle

ẋi = ẍi = ẏi = ÿi = żi = z̈i = 0

For a two-craft Coulomb formation, this is only possible if the relative positions are given
through:

m1x1 +m2x2 = 0 (5a)
x1 − x2 = L (5b)

x1 =
m2

m1 +m2
L (5c)

x2 = − m1

m1 +m2
L (5d)

y1 = y2 = z1 = z2 = 0 (5e)

Substituting the above conditions and constraints in Eq. (3), we arrive at the following two
spacecraft charge conditions.

kc

m1

q1q2
L2

+ 3Ω2 m2L

m1 +m2
= 0 ⇒ q1q2 = −3Ω2L

3

kc

m1m2

m1 +m2
(6a)

kc

m2

q1q2
L2

+ 3Ω2 m1L

m1 +m2
= 0 ⇒ q1q2 = −3Ω2L

3

kc

m1m2

m1 +m2
(6b)

Thus, the ideal product of charges Qref needed to achieve this static Coulomb formation is

Qref = q1q2 = −3Ω2L
3

kc

m1m2

m1 +m2
(7)

Thus, if the satellites are placed at the locations shown in Eq. (5), and have the charges
q1 and q2 satisfy Eq. (7), then the satellites will appear to be frozen or fixed as seen by
the rotating frame O. Note that this reference charge product term will be negative! This
dictates that the spacecraft charges q1 and q2 will have opposite charge signs.

5



ôh
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Figure 3: Euler Angles Representing the Attitude of Coulomb Tether with Re-
spect to the Orbit Frame

LINEARIZED ORBITAL PERTURBATION

The constant charge computed in accordance with Eq. (7) is adequate to maintain the
satellite formation if there is no perturbation of the orbit. In the event of a perturbation,
the relative separation will become unstable and the satellites will separate. In this section,
we establish a relationship between these position and charge states by considering small
perturbations about the established reference states.

Let us treat the two-craft formation as if it were a solid, physically connected body. Thus,
we introduce the body-fixed coordinate frame B : {b̂1, b̂2, b̂3} where b̂1 is aligned with the
relative position vector ρ1. Note that if the body is at the ideal Coulomb tether orientation
where the masses are aligned equally along the orbit nadir direction ôr, then we find that
the O and B frame orientation vectors are identical. The relative position vector of mass
m1 in body fixed axes is given by

ρ1 =
m2

m1 +m2
Lb̂1 + 0b̂2 + 0b̂3 (8)

Let the 3-2-1 Euler angles (ψ, θ, φ) represent the Coulomb tether B frame attitude
relative to the orbit frame O for small angular perturbations as shown in Figure 3. Because
point masses are being considered, the rotation about b̂1 ( angle φ) can be neglected. The
direction cosine matrix [BO(ψ, θ)], which relates the O frame to B frame, is given by

[BO] =

cos θ cosψ cos θ sinψ − sin θ
− sinψ cosψ 0

sin θ cosψ sin θ sinψ cos θ

 (9)

Using small angle approximations for the trigonometric functions, the position vector of
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mass m1 in O frame can be written asx1

y1

z1

 = [BO]T

 m2
m1+m2

L

0
0

 ≈

 m2
m1+m2

L

ψ m2
m1+m2

L

−θ m2
m1+m2

L

 (10)

Taking the derivative of this expression, the linearized Hill frame relative velocity coordi-
nates are found to be ẋ1

ẏ1

ż1

 ≈ m2

m1 +m2

 L̇

ψL̇+ ψ̇L

−θL̇− θ̇L

 (11)

The distance L between the two masses m1 and m2 is given by

L2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (12)

Using the center of mass condition in Eq. (4), this can be simplified to

L2 =
(
m1 +m2

m2

)2

(x2
1 + y2

1 + z2
1) (13)

Differentiating the above expression twice and substituting for the second derivatives from
Eq. (3), we obtain

L̇2 + LL̈ =
(
m1 +m2

m2

)2 (
ẋ2

1 + x1

(
2Ωẏ1 + 3Ω2x1 +

kc

m1

(x1 − x2)
L3

Q
)

+ ẏ2
1 + y1

(
− 2Ωẋ1

+
kc

m1

(y1 − y2)
L3

Q
)

+ ż2
1 + z1

(
− Ω2z1 +

kc

m1

(z1 − z2)
L3

Q
))

(14)

Transforming the Cartesian coordinates (x1, y1, z1) to spherical coordinates (L,ψ, θ) using
Eq. (10) & Eq. (11) and neglecting higher order terms in ψ and θ, we get the linearized
differential equation of the separation distance L.

L̈ = (2Ωψ̇ + 3Ω2)L+
kc

m1
Q

1
L2

m1 +m2

m2
(15)

Note the following special case. Assume that the charge product term Q is zero (i.e. classical
Keplerian motion), and that the satellites are initial at rest with ψ̇ = 0. In this case the
separation distance equations of motion simplify to

L̈− 3Ω2L = 0

This unstable oscillator equation demonstrates that without any Coulomb force active, this
formation could not remain at the specific locations.

Next the separation distance equations of motion are linearized about small variations in
length δL and small variations in the product charge term δQ. The reference separation
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length Lref is determined by the mission requirement. The reference charge product term
is determined through the Lref choice and the constraint in Eq. (7).

L = Lref + δL (16a)
Q = Qref + δQ (16b)

Substituting these L and Q definitions into Eq. (15) and linearizing leads to

δL̈ = (2ΩLref)ψ̇ + (9Ω2)δL+
(
kc

m1

1
L2

ref

m1 +m2

m2

)
δQ (17)

This equation establishes the desired relationship between the additional charge product
δQ required and the change in relative separation of the satellites. We observe that this
relation is coupled to the body frame yaw rate ψ̇. In order to obtain an expression for this,
we resort to a stability analysis using gravity gradient.

To develop a feedback law to control the separation distance using the Coulomb forces,
we first treat the small charge product variation δQ as a control variable. Because the
charge of each craft causes a force on craft 1 along the relative position vector, the Coulomb
charges can be used to control the spacecraft separation distance. By defining

δQ =
m1m2L

2
ref

(m1 +m2) kc
(−C1δL− C2δL̇) (18)

the closed-loop separation distance dynamics become

δL̈+ (C1 − 9Ω2)δL+ C2δL̇− (2ΩLref)ψ̇ = 0 (19)

This control law provides both proportional and derivative feedback of δL. Because the δL
differential equation does not contain a damping term δL̇, the inclusion of the derivative
feedback is essential to ensure asymptotic convergence. Note that in the absence of the yaw
rate term ψ̇, these closed-loop dynamics would be stable if C1 > 9Ω2 and C2 > 0. However,
due to the coupling with the yaw (in-orbit-plane) rotation, the complete Coulomb tether
motion must be analyzed for stability.

To implement this charge feedback control law, the spacecraft charges q1 and q2 must be
determined. The value of Qref is determined through Eq. (7), while the value of δQ is given
by the feedback law expression in Eq. (18). Thus, the spacecraft charges q1 and q2 must
satisfy

q1q2 = Qref + δQ (20)

There is an infinite number of solutions to the above constraint. To keep the charges equal
in magnitude across the craft, the following implementation was used.

q1 =
√
|Qref + δQ| (21)

q2 = −q1 (22)

Note that here Qref + δQ < 0 because δQ � Qref and Qref < 0. With this charging
convention q1 > 0 and q2 < 0.
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STABILITY ANALYSIS USING GRAVITY GRADIENT

In this section we analyze the stability of both the Coulomb tether attitude (ψ, θ) and the
separation distance L. The gravity gradient torque is included to exert an external torque
onto the Coulomb tether. Let the orbit angular velocity vector relative to the inertial frame
N be given by

ωO/N = ω = Ωôh (23)

Euler’s rotational equation of motion with time varying inertia matrix [I] and gravity gra-
dient torque vector LG is given in body frame B by

B[I] Bω̇ + B[İ] Bω + B[ω̃] B[I] Bω = BLG (24)

where the notation [ω̃]x ≡ ω × x is used. Using the direction cosine matrix definition in
Eq. (10), the orbit angular velocity vector can be written as

BωO/N = [BO]OωO/N =

−Ω sin θ
0

Ω cos θ

 (25)

The yaw and pitch rates of the Coulomb tether body frame B relative to the orbit O frame
yield

BωB/O =

− sin θ 0
0 1

cos θ 0

[
ψ̇

θ̇

]
(26)

The Coulomb tether body frame angular velocity vector relative to the inertial frame N is

BωB/N = BωB/O + BωO/N =

B− sin θψ̇ − Ω sin θ
θ̇

cos θψ̇ + Ω cos θ

 (27)

Linearizing the Eq. (27) about small yaw and pitch angles, we get

BωB/N ≈

B −Ωθ
θ̇

ψ̇ + Ω

 (28)

Taking the inertial derivative of this vector and noting that Ω is constant in this application,
the B frame angular acceleration is

Bω̇B/N ≈

B−Ωθ̇
θ̈

ψ̈

 (29)

The moment of inertia matrix is expressed as7

[I] = −m1[ρ̃1][ρ̃1]−m1[ρ̃2][ρ̃2] (30)
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For the 2-craft Coulomb tether formation, using the center of mass definition in Eq. (4),
the inertia matrix is trivially given in the body frame B as

B[I] =

0 0 0
0 I 0
0 0 I

 (31)

where

I =
m1m2

m1 +m2
L2 (32)

The B-frame derivative of the inertia matrix is

B[İ] =

0 0 0
0 İ 0
0 0 İ

 (33)

where

İ = 2
m1m2

m1 +m2
LL̇ = 2

m1m2

m1 +m2
(Lref + δL)δL̇ (34)

because Lref =constant.

The center of mass position vector Rc, given in O frame components as

ORc =

BRc

0
0

 (35)

is transformed to the B frame as

BRc =

BRc1

Rc2

Rc3

 =

Bcos θ cosψ
− sinψ

sin θ cosψ

Rc (36)

Reference 7 provides the following expression for gravity gradient:

BLG1

LG2

LG3

 =
3GMe

R5
c

Rc2Rc3(I33 − I22)
Rc1Rc3(I11 − I33)
Rc1Rc2(I22 − I11)

 (37)

After substituting for Rci from Eq. (36) and using the known value of Ω from Kepler’s
equation, namely,

3GMe

R3
c

= Ω2 (38)

the gravity gradient torque vector acting on the Coulomb tether body frame is written as

BLG
∼= 3Ω2

 0
−Iθ
−Iψ

 (39)
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Next, we are able to substitute these results for LG, B[İ], B[I], ωB/N and ω̇B/N back
into Euler’s rotational equations of motion in Eq. (24). After simplifying the algebra, the
resulting linearized attitude dynamics of the Coulomb tether body frame B are written with
the separation distance differential equation as:

θ̈ + 4Ω2θ = 0 (40a)

ψ̈ +
2Ω
Lref

δL̇+ 3Ω2ψ = 0 (40b)

δL̈+ C2δL̇− (2ΩLref)ψ̇ + (C1 − 9Ω2)δL = 0 (40c)

Thus, Eqs. (40a) – (40c) are the linearized equations of motion of the Coulomb tether body.
It can be observed from these equations that θ is decoupled and its equation is that of
a simple oscillator. This decoupling is analogous to what occurs with the linearized rigid
body attitude dynamics subject to a gravity gradient torque. Because the θ motion not
coupled to the tether charge product term δQ, or the separation distance variation δL, it is
not possible to control the pitch motion θ with the Coulomb charge. The yaw motion ψ(t)
is coupled with the δL(t) motion in the form of a driving force which may make it amenable
to asymptotic stabilization by controlling the charge.

The values of gain C1 and C2 can be tuned to meet the stability requirements using
Routh-Hurwitz stability criterion. The characteristic equation for the coupled δL and ψ
equations was found to be

λ4 + C2λ
3 + (C1 − 2Ω2)λ2 + 3C2Ω2λ+ 3(C1Ω2 − 9Ω4) = 0 (41)

While the linearized closed-loop dynamics do depend on the Coulomb tether reference length
Lref, note that the characteristic equation does not. The roots of Eq. (41) do depend on
the mean orbit rate Ω. To ensure asymptotic stability, roots of this equation should have
negative real part. The constraints on the gains C1 and C2 for meeting this condition were
identified by constructing a Routh table and were found to be

C1 > 9Ω2 (42a)
C2 > 0 (42b)

Incidentally, these constraints also ensure the stability of δL equation ignoring the ψ̇ term.
We fix the gain C2 so that the δL equation, with the ψ̇ term neglected, is critically damped.
Let n be a positive, real feedback gain scaling factor. Then we can define

C1 = nΩ2 (43)

Further, the critical damping requires that

C2 = 2Ω
√
n− 9 (44)

The natural frequency of the ψ equation is
√

3Ω and is not affected by the choice of C1 and
C2. Whereas the natural frequency for δL equation is

√
(n− 9)Ω. The value of n = 12

will match these frequencies making the ψ̇ coupling term in δL equation to contribute to
the damping. A similar remark applies to the ψ equation. Therefore, this choice should
be optimal. To further elucidate this aspect, the real part of the roots of the characteristic
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equation was examined numerically. Since the roots are complex conjugate pairs, there are
only two real parts that need to be considered. A plot of the two real parts for n varying
between 9 and 40 are shown in Figure 4. It is seen that the real part of one of the roots
will tend to zero on either side of n = 12. Hence, value of n very close to 9 or those which
are large will tend to slow down the asymptotic convergence.
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Figure 4: Real Part of the Roots of the Characteristic Equation for Varying Gains

NUMERICAL SIMULATION

A numerical simulation is presented to illustrate the performance and stability of a
Coulomb tether formation. The simulation parameters that were used are listed in Ta-
ble 1. The initial attitude values are set to ψ = 0.01 radians and θ = 0.01 rad. The
separation length error (Coulomb tether length error) is δL = 0.1 meters. All initial rates
are set to zero through ψ̇ = δL̇ = θ̇ = 0.

The choice of values for the gains C1 and C2 should not only satisfy the stability criterion
mentioned in Eq. (42) but also should be such as to lead to critical damping. To estimate
such gains, the ψ̇ term in δL equation is ignored (Eq. (17)), and the approximate values of
C1 and C2 are found to be 10Ω2 and 2Ω respectively. The equations were solved using a
Runge-Kutta integrator with a time step of 100 seconds, which is sufficiently smaller than
the period of natural oscillation.

Table 1: Input Parameters Used in Simulation

Parameter Value [Units]
m1 150 kg
m2 150 kg
Lref 10 m
kc 8.99× 109 Nm2

C2

Qref −1.3306× 10−1 µC2

Ω 7.2915× 10−5 rad/sec

Figure 5(a) shows the Coulomb tether motion if the linearized spherical coordinates
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Figure 5: Simulation Results of Integrating the Linearized Spherical Coordinates
Differential Equations.
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Figure 6: Convergence of x1, y1 and z1 Simulated Using Cartesian Hill’s Equa-
tions with Full Non-Linear Coulomb Force Term
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Figure 7: Spacecraft Control Charge Illustrations.

(ψ, θ, δL) are used. With the presented charge feedback law, both the yaw motion ψ and
the separation distance deviation δL converged to zero. The wiggle seen in the otherwise
critically damped δL is due to the ψ̇ coupling term which acts as a driving force. The
damping of ψ occurs due to the phase difference between the driving δL̇ term and ψ in
Eq. (40b). For the set of initial conditions the restoration to equilibrium occurs in about
2 days or two orbit revolutions at GEO. As expected, the pitch motion θ(t) was a stable
sinusoidal motion. The values of the x1, y1 and z1 coordinates calculated from δL, ψ and
θ values using Eq. (10) are plotted in Figure 5(b).

Figure 6 shows the solution of the nonlinear equation under these conditions. From the
graph it is evident that the initial behavior is captured by the linearized model and this
in essence verifies the linearization. However, the approach to convergence is slower in the
nonlinear case.

Figure 7(a) and Figure 7(b) show the spacecraft control charges q1 and q2 for the case
where the Cartesian Hill frame coordinates are integrated with the full nonlinear Coulomb
force computation. The charges are equal in magnitude and opposite in polarity. Both are
converging to their respective reference values pertaining to the static equilibrium. Note
that the deviation from the value of reference charges is small, justifying the linearization
assumptions used. The magnitude of the control charges is in the order of micro-Coulomb
which is easily realizable in practice using charge emission devices.

CONCLUSION

The concept of a Coulomb (electrostatic) tether is introduced to bind two satellites in a
near-rigid formation. While the Coulomb force cannot stabilize the attitude, the gravity
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gradient torque is exploited to stabilize the Coulomb tether formation about the orbit nadir
direction. The analysis is based on a linearized model whose validity is also shown. It
was observed that a simple feedback law for the restoring charge in terms of the change
in relative separation and its rate is adequate for separation distance control. The control
charge needed are small and realizable in practice.
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