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STATIC EQUILIBRIUM CONFIGURATIONS IN GEO
COULOMB SPACECRAFT FORMATIONS

John Berryman∗ and Hanspeter Schaub†

The benefits of Coulomb control for spacecraft formations include minimal
power usage, virtual lack of propellant, and low mass. Before this method of
formation control is mission-worthy, the dynamics that govern the motion of
charged spacecraft must be better understood. The purpose of this research
is to use the evolutionary algorithm to numerically search for steady-state
equilibriums in which the sum of the accelerations on each satellite is zero,
essentially freezing the satellite formation with respect to the rotating Hill
frame. Difficulties encountered will be discussed as well as methods to cir-
cumnavigate these difficulties.

1 INTRODUCTION

In recent years there has been increasing interest in close-proximity spacecraft formation
flying. Here the spacecraft are flying tens to hundreds of meters apart with applications
ranging from wide field of view sparse radar interferometry systems and autonomous robotic
scouts flying about a mother craft, to swarms of pico-satellites that will provide a distributed
sensing platform. King and Parker discuss in Reference 1 an attractive method of achieving
a wide field of view interferometry mission using Coulomb thrusting. Using a distributed
set of sensors, the discrete readings are combined to form a high-resolution image. Meter-
level sensing accuracy with infinite dwell time could be achieved by having sensors flying
tens of meters apart at geostationary altitudes to form a sparse interferometric dish. Build-
ing a single structure with diameter ranging from tens to hundreds of meters would be a
very costly and challenging endeavor. Radar based interferometry, and especially optical
interferometry, require very precise alignments of the sensors. Controlling the vibration and
flexing modes of such large structures would be very daunting. Having discretely distributed
sensors flying in a tight formation would provide an attractive alternative. Such formations
would be more robust to single sensor failures. The formation could continue to function,
even though it is operating at a reduced capacity.

Unfortunately, most close proximity missions are not feasible with the current technology
available. Electric propulsion (EP) thrusters have been presented as a candidate technol-
ogy for this task, however, they come with several problems that may ultimately prove
insurmountable. The basic concept of the EP thruster is to rapidly accelerate and eject
charged particles and in doing so propel the spacecraft forward. This method of propulsion
has some beneficial qualities. For instance, the specific impulse provided by these systems
tends to be very high, up to Isp values of 6000 seconds. Additionally, the total mass of EP
systems is often just a small fraction of the mass of more traditional propulsion systems.
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Unfortunately, EP systems have one significant drawback: the charged particles that they
emit are very caustic and tend to damage anything they contact. In most missions, this
would be of no consequence because the propellant is discharged safely behind the space-
craft, but when several spacecraft are in close proximity to one another, the propellant can
damage the payloads of neighboring crafts. Also, because EP expels particles to propel the
spacecraft, the life of a mission will often be limited by the amount of propellant that can
be carried aboard a spacecraft.2

In contrast to traditional formation flying concepts, King and Parker proposed in Refer-
ence 1 to control the relative spacecraft motion by exploiting the inter-spacecraft electro-
static (Coulomb) force. By raising and lowering the Coulomb charge of the spacecraft in
a cluster, each spacecraft exerts a force on all other spacecraft. This force can potentially
be exploited to control the shape, and thus the relative motion, of the spacecraft forma-
tion.1–5 However, unlike EP systems, Coulomb control would be essentially propellantless
with equivalent Isp values to control the relative motion ranging up to 1010–1013 seconds.
Further, the electric power required to achieve this is often 1 Watt or less. The EP power
requirements are typically orders of magnitude larger. Coulomb thrusting is a very clean
method of relative motion propulsion and thus raises no problem of plume impingement
with other spacecraft in a tight formation.1,3 Due to the extremely high fuel-efficiency
of these systems, they have been coined as being “essentially” propellantless. Finally, all
relative motion is achieved using renewable electric energy.

Even though Coulomb control enjoys obvious advantages, it also has some drawbacks.
This method of control is based upon the attraction and repulsion of charged bodies. For this
reason, the charged plasma environment in space tends to diminish a spacecraft’s influence
upon other spacecraft by masking its charge. Additionally, the plasma environment of space
tends to naturally charge a spacecraft. Significant spacecraft charging can be observed at
altitudes as high as Geostationary Orbits (GEO).6 With Coulomb control, all forces are
internal, i.e., each satellite is either pushing or pulling against the others. For this reason,
the inertial linear and rotational momentum can not be altered by Coulomb forces.7,8

Finally, the dynamics of such a system are highly coupled and non-linear. For example, if
the position or charge of one spacecraft is altered, then the forces on all formation spacecraft
will be affected. Despite the difficulties involved with this approach of formation control, if
the dynamics can be better understood, then the Coulomb control might one day be a fuel
efficient, inexpensive, long lasting and dependable method for controlling close proximity
formations.

Reference 2 discusses exciting static solutions of the charged spacecraft equations of
motion. Here spacecraft charges are found which will cancel the orbital dynamics, yielding
formations that are static as seen by the rotating Hill frame. Using formation symmetry and
formation circular center of mass motion assumptions, analytical solutions are found for 3 to
7 spacecraft. These static formations are excellent candidate formations to develop virtual
Coulomb structures. Here the craft are not orbiting about each other as in conventional
spacecraft formation concepts; rather the Coulomb forces create an internal tension which
allows the cluster to maintain a specific shape and act as a semi-rigid body. Substantial
weight savings could be achieved if large GEO or deep-space structures could be built in
this distributed manner.

The goal of this paper is to search for static Coulomb formations in circular orbits around

2



a planet. The word static indicates that the positions of the formation spacecraft remain
constant in the rotating Hill coordinate frame. This is achieved by positioning and charging
the spacecraft so that the net accelerations due to attraction and repulsion of the space-
craft will cancel the accelerations in the Hill frame. References 2 and 3 have shown a few
analytical results for simple geometries at GEO. This paper will extend this static Coulomb
formation search by employing an Evolutionary Algorithm (EA) to numerically search for
such formations.9 Due to the fact that the system’s equations of motion are highly nonlin-
ear and coupled, static solutions are very non-intuitive and difficult to find – making this
problem ideal for an EA. Of importance is that EA’s require very little a priori knowledge
of the solution. EA’s have been used in complex space applications to search for low-thrust
trajectories in References 10 and 11. Reference 12 developed an EA based station keeping
strategy. This papers illustrates how an EA can be used to investigate the very complex and
non-intuitive Coulomb formation dynamics. The results collected from the study will then
be discussed. A final consideration will be given to the computational demands involved
with the numerical search.
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Figure 1: Illustration of the Rotating Hill Coordinate Frame

2 PROBLEM STATEMENT

Let ri be the inertial position vector of a spacecraft, and rc be the inertial formation
center of mass position vector. The formation center of mass will be referred to as the
chief position. As illustrated in Figure 1, the relative position vector is then defined as
ρi = ri − rc. The rotating Hill frame H : {ôr, ôθ, ôh} is defined to follow the formation
center of mass (or chief) motion. It has the unit orientation axis ôr defined as the orbit
radial direction of the formation center of mass position vector, ôh pointing in the orbit
normal direction, while ôθ completes the right handed triad. Let the ith relative position
vector be expressed in Hill frame components as

ρi =

Hxi

yi

zi

 (1)

For a Coulomb formation to be static (or frozen) with respect to the Hill frame, then all
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relative motion velocity coordinates (ẋi, ẏi, żi) and acceleration coordinates (ẍi, ÿi, z̈i) must
be zero throughout the orbit. This is achieved through careful positioning and charging of
the spacecraft such that the accelerations due to the charges exactly opposes the acceler-
ations from the Hill frame, effectively nullifying one another. Mathematically, this can be
seen by adding the Coulomb force terms to the right hand side of Hill’s equations.13–15

ẍi − 2nẏi − 3n2xi =
kc

mi

N∑
j=1

xi − xj

|ρi − ρj |3
qiqje

− λd
ρij (2)

ÿi + 2nẋi =
kc

mi

N∑
j=1

yi − yj

|ρi − ρj |3
qiqje

− λd
ρij (3)

z̈i + n2zi =
kc

mi

N∑
j=1

zi − zj

|ρi − ρj |3
qiqje

− λd
ρij (4)

The chief motion is assumed to be circular with a constant mean orbit rate n. The parameter
kc = 8.99 · 109 Nm2/C2 is Coulomb’s constant. When two charged bodies are brought near
to one another, they exert a force on each other that is proportional to the product of
their charges and inversely proportional to the square of the distance that separates them.
Oppositely charged bodies will attract one another and similarly charged bodies will repel
one another. The acceleration that is due to the force of one body on another is found by
dividing the force by the mass of the body that is being accelerated. Therefore, the new
terms on the right hand side of Hill’s equations define the net acceleration experienced by
one spacecraft due to its Coulomb interaction with all the other charged spacecraft. Note
that the standard electrostatic inverse-square field strength formula is augmented with the
exponential decay term. The Debye length λd determines how fast the field strength will
weaken due to the interaction with the space plasma environment.16–18 At GEO the Debye
length is rather large with values ranging between 140–1400 meters. Because the static
Coulomb formations considered only have dimensions of 10’s of meters, the Debye length
term is assumed to be infinitely large in this study.

Note that the Coulomb force term in Eqs. (2)–(4) couples the relative differential equa-
tions of motion of all spacecraft. This is in contrast to traditional formations where the
motion of one craft does not directly influence the motion of other craft. This strong phys-
ical coupling makes searching for static steady-state Coulomb formations a non-trivial and
non-intuitive matter.

To find static steady-state Coulomb formations, the spacecraft relative positions and
charges are adjusted in these equations, such that the acceleration remains zero. Because
we are searching for static solutions, the velocity coordinates (ẋi, ẏi, żi) are set to zero.
Without these Coulomb forces present, the only static solution of Hill’s equations is the
simple lead-follower formation where xi = zi = 0. If there is radial or out-of-plane relative
motion, then the only bounded relative motion solutions will yield a 2:1 ellipse in the (ôr, ôθ)
plane and a decoupled sinusoidal motion in the ôh direction.14,19

3 STATIC COULOMB FORMATION SEARCH STRATEGY

As motivation for more complex cases involving many spacecraft, consider the simple case
of two charged spacecraft of the same mass that are aligned along the radial axis. Because
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there will be no radial or along-track velocities, the equations decouple, and the following
two equations are sufficient to determine the positions and charges of each spacecraft.

ẍ1 = 0 =
kc

m

x1 − x2

|ρ1 − ρ2|3
q1q2 + 3n2x1 (5)

ẍ2 = 0 =
kc

m

x2 − x1

|ρ2 − ρ1|3
q2q1 + 3n2x2 (6)

Note, the Debye length term is dropped here. Since both spacecraft are situated along
the radial axis, the |ρ1 − ρ2|3 term simplifies to |x1 − x2|3, and the necessary conditions for
a static formation become

kcq1q2

m(x1 − x2)2
= −3n2x1 (7)

kcq1q2

m(x1 − x2)2
= 3n2x2 (8)

By combining these two equations so that the quantity kcq1q2/m(x1−x2)2 is eliminated,
we find that the positions of the two crafts must be the same distance d/2 away from the
origin of the Hill’s frame. Thus x1 = −x2 = d/2 must be true for this simple static Coulomb
solution, where d is the distance between the two crafts. The product of the two charges
can be found by substituting this relationship into the first equation and then solving for
the quantity q1q2 .

kcq1q2

md2
= −3

2
n2d

q1q2 = −3
2

mn2d3

kc
(9)

As a more specific example, consider the following two spacecraft formation orbiting the
Earth in a circular GEO orbit with n = 7.2722 × 10−5sec−1. The spacecraft are both 100
kg and they are separated by 20 meters. If the spacecraft are charged to

q = ±

√
3
2

mn2d3

kc
= ±8.4030× 10−7C

then the above equations are satisfied. As long as no perturbations are present, this forma-
tion will remain stationary with respect to the Hill’s frame.

With higher numbers of spacecraft that are arbitrarily positioned in the Hill’s frame,
the equations of motion become complicated, nonlinear, and highly coupled. Furthermore,
with each additional spacecraft, there are three more equations that must be satisfied (i.e.,
Hill frame accelerations being zero for each new spacecraft), and four more unknowns (i.e.,
the elements of the position vector and the charge of each new spacecraft). Therefore,
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a direct analytical approach will be formidable for a large number of spacecraft making
a numerical search for static Coulomb formations more appealing. Once several static
formations are identified, new solutions can be analytically determined by reparameterizing
the Hill’s equations to reflect the resulting formations. Even solutions that are too complex
to be useful in reparameterization can still provide a basic understanding of the possibilities
of static Coulomb formations.

The problem can be extended to N spacecraft by considering the additional free param-
eters attributed to each new spacecraft. For the case of two spacecraft, the free parameters
are the positions and the charges of each spacecraft. This is also true for the general case
except that the position of each spacecraft now has three free parameters instead of one. So
for Coulomb formations with N spacecraft there are 4N parameters which must be deter-
mined: the 3 directional coordinates for each spacecraft and the charge for each spacecraft.
This total number of parameters can be reduced by 3 by defining the center of mass of the
formation to coincide with the origin of the Hill frame. Here the relative position vectors
must satisfy

N∑
i=1

mixi =
N∑

i=1

miyi =
N∑

i=1

mizi = 0 (10)

So the final number of parameters for N spacecraft is 4N − 3. Applying this constraint on
the position coordinates, (xi, yi, zi), eliminates repeated solutions, (i.e., solutions that are
identical but are displaced by a constant distance in the along track direction). It is still
possible to find solutions with identical configurations that are oriented differently. In fact,
finding such shapes that can exist with arbitrary orientations would be of great interest.

4 EVOLUTIONARY ALGORITHM

4.1 Search Algorithm Outline

Let p represent a parameter vector containing

p = (x1, y1, z1, q1, · · · , xN−1, yN−1, zN−1, qN−1, qN ) (11)

Note that these parameters do not contain the (xN , yN , zN ) coordinates. These are found
by employing the formation center of mass constraint

ρN =

HxN

yN

zN

 =
1
M

N−1∑
i=1

miρi (12)

where

M =
N∑

i=1

mi (13)

is the total formation mass. To simplify this study, the mass of each spacecraft is chosen
to be 1kg. To find the static Coulomb formations, a cost function J(p) is defined to be a
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Figure 2: Illustration of the Single-Processor Evolutionary Algorithm

positive definite measure of the spacecraft accelerations (ẍi, ÿi, z̈i). If J(p) = 0, then a set of
parameters has been found which yields a static Coulomb formation. An obvious numerical
algorithm to minimize J(p) is a gradient based numerical optimization scheme. Using an
initial guess of p, the numerical optimizer proceeds in the direction of steepest decent ∂J/∂p
until finally coming to rest when the cost function evaluates to zero, indicating that the
spacecraft are fixed relative to the Hill’s frame. Unfortunately, in practice, it is not this
simple. Gradient based methods require that an initial guess be given. However, for the
problem at hand, there are few obvious initial guesses. Furthermore, the gradient based
methods will only search for solutions in the neighborhood of the initial guesses. Since
the equations involved here are non-intuitive by nature, there are likely many solutions
scattered throughout the search space. Searching in the neighborhood of a few carefully
selected initial guesses would prevent the less intuitive solutions from being discovered. For
these reasons, gradient based methods are less preferable for the problem discussed here.

Evolutionary algorithms (EA) are a relatively new group of methods used to solve a
wide range of problems. The evolutionary algorithm employed in this study is outlined in
Figure 2. Initially, a population is created where each member is a set of parameters p
that describes a potential solution. The members of this initial population are scattered
throughout the search space. For N spacecraft, each set of parameters would contain N
values that define the charge of each spacecraft and 3N−3 values that define their positions.
The EA then “mates” the members of this initial population so that their offspring represent
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a recombination of the parent’s parameters.

Often the parameters are represented in binary form and then concatenated as a single
string of ones and zeros. The algorithm used in this study did not concatenate the param-
eters. Rather, it kept each parameter a separate entity represented by a double precision
number. To mate two parents together, the algorithm used one of two methods. The first
method is to create a child whose parameters are randomly chosen from the parameters of
the parents. For instance, the charge of spacecraft 1 might come from the mother while
the charge of spacecraft 2 could be from the father. The mating of an individual parameter
value by this method can be displayed algebraically.

pichild
= (ribit

)× pimother
+ (!ribit

)× pifather
(14)

Where ribit
is a random number that is either 0 or 1 and pi represents a generic parameter.

To mate the entire parameter vector p this equation is used for each individual parameter
value.

The second mating method involved interpolating to some arbitrary point around the
parents. For instance the child could receive 40% of it’s spacecraft 1 charge from the
mother and 60% from the father, (a weighted average of the two charges), and the charge
for spacecraft 2 could be a different weighted average of the parents parameters. The second
method is extended to allow the algorithm to search in areas slightly outside of the area
between the parents. This was done by allowing the weighted average to go beyond a
0%/100% ratio. In the extreme case, it would be possible for a child to receive 125% of a
parameter value from one parent while receiving -25% from the other.

pichild
= (rrand)× pimother

+ (1− rrand)× pifather
(15)

The parameter rrand is a random number of binomial distribution that is between -0.25 and
1.25. During a search for a formation, the algorithm randomly executes both methods of
mating in equal proportions.

Parameter mutation is also included to increase variability and explore new portions of
the parameter space. This is done by adding a random number, rmutation, to a child’s current
parameter value. This number is generated by taking the product of a random number of a
Gaussian distribution, the maximum allowable value of the parameter being mutated and a
term that oscillates periodically as a function of generation. (The Gaussian random number
has a mean of 0, and a standard deviation and variance of 1.) Let q be an EA parameter
that is to be mutated. The total mutation for a charge can be algebraically represented as

qmutated = qoriginal + rmutation (16)

where

rmutation = rgaussian qmax

(
cos

(
generation

3

)
+ 1

)2

(17)

The last term, a periodic function of generation, is present so that during some generations
the mutation will be large, and during other generations the mutation will be small. This
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allows the mutation to at times search randomly in distant territory of the cost domain and
at other times to zero in on the current best solution(s).

With each successive generation, only the most “fit” members are allowed to procreate
thereby improving population fitness until the members converge to a single point in the
search space. Ideal fitness for a Coulomb formation occurs when the net acceleration of
each spacecraft is zero, or at least as close as machine precision allows. There are several
variations of the EA, but all of them in some manner use this Darwinian approach to
improve member fitness and find a solution. Although the EA, as outlined above, describes
an algorithm that would be used on a single-processor, this basic idea can be easily extended
for use in a distributed computing platform making it an even more powerful tool for
optimization.

This approach to optimization offers several advantages over some of the more traditional,
gradient based methods. Most notably, the EA does not require an initial guess, but only a
domain in which to search. Also, the very nature of EAs allow them to search the parameter
space in a much more global manner than a gradient based method. While gradient based
algorithms search in the neighborhood of an initial guess, EA’s use many different initial
guesses. By recombining and mutating their parameters, each member of a population
shares information with the others, looks in places that might not be obvious, and in effect
cooperates in searching for a more global solution. Finally, EA’s are generally more equipped
for solving unconventional problems than the more traditional methods. For instance, EAs
are capable of handling problems with both continuous and discreet parameters just as easily
as it would handle a problem with only continuous parameters. Despite these advantages,
EA’s are computationally intensive, and in circumstances where the problem is linear and
well behaved, it is generally better to use a gradient based method. However, determination
of static Coulomb formations involves highly coupled nonlinear equations, making the EA
an attractive computational tool to explore static formation solutions.

4.2 Cost Function Definition

To numerically search for static Coulomb formations, cost function J(p) is defined which
is a positive definite measure of the spacecraft accelerations in the Hill frame. As the
accelerations of the spacecraft decrease, J(p) will also decrease. In the limiting case, each
spacecraft will have no acceleration and J(p) will be identically 0. The following discussion
explores several cost functions and strategies that were used during this research. First,
some of the terms used in the cost function must be clearly defined. Let the acceleration
components in the Hill frame be expressed as

axi =
kc

mi

N∑
j=1

xi − xj

|ρi − ρj |3
qiqj + 3n2xi (18)

ayi =
kc

mi

N∑
j=1

yi − yj

|ρi − ρj |3
qiqj (19)

azi =
kc

mi

N∑
j=1

zi − zj

|ρi − ρj |3
qiqj − n2zi (20)
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Note that for static, steady-state solutions these accelerations must remain zero. Here all
coordinate rates ẋi, ẏi and żi are set to zero. The acceleration vector that would result if
all N craft were placed at (xi, yi, zi) with zero velocity is

ai =

Haxi

ayi

azi

 (21)

Also aij represents the acceleration imparted to spacecraft i by its Coulomb force field
interaction with spacecraft j. This is algebraically represented as

aij =
kc

mi

ρi − ρj

|ρi − ρj |3
qiqj (22)

The following cost function was first considered for determining Coulomb formations.

J(p) =
N∑

i=1

‖ai‖ (23)

Literally, this function is minimized as the sum of the acceleration magnitudes approaches
zero. This cost function seems to be the most obvious; however in practice, it almost always
leads to a trivial solution. As J(p) approaches zero, the charges for all or all but one of the
spacecraft move toward zero and each spacecraft becomes aligned with the ôθ along-track
axis. When the charges are set to zero, there is obviously no inter-spacecraft acceleration
due to the Coulomb charge. Furthermore, when the spacecraft are aligned along the ôθ axis
in a classical lead-follower formation, the Hill frame accelerations vanish as well. Therefore,
even though this is a solution, it is of little interest because they do not exploit the spacecraft
charging properties. Thus the algorithm or the cost function must be altered in order to
avoid this trivial charge-free case.

The first modification to the search algorithm quarantined members of the EA population
as a means of avoiding this trivial solution. Lower magnitude bounds were imposed on the
spacecraft charges. Each time one of the charges became smaller than a lower bound, the
charge would be reset. The effect was similar to a mutation; therefore the member was
still useful in searching the space, while remaining at a distance from the trivial solution.
Unfortunately, this method was completely ineffective. Once the EA was forced to search
outside the trivial solution, the results often converged to non-optimal points along the
constraint boundary.

Finally, a weighting term was included in the cost function that effectively avoided the
trivial solution. A new cost function was created by dividing the previous one by the sum
of the magnitudes of the inter-spacecraft accelerations, as seen here:

J(p) =
N∑

i=1

‖ai‖

/
N∑

j=1

N∑
i=1

‖aij‖ (24)

This cost function not only measures the net accelerations of each spacecraft, but now
the denominator provides a measure of the Coulomb interaction between the spacecraft.
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Therefore, as the trivial solution is approached – as the Coulomb interaction becomes very
weak – the denominator approaches zero and the cost increases, effectively masking the
trivial solution. However, the non-trivial solutions – those formations that are static and
who’s inter-spacecraft interactions are non-negligible – will still have a cost of zero.

This cost function effectively removes the trivial solution from the search space such that
each successful run of the EA produces a new, nontrivial solution. In addition, because it
reflects the strength of the spacecraft interactions, the new term provides an unexpected
benefit by causing the EA to be more attracted to static formations with stronger Coulomb
interaction. Therefore, if a resulting formation is being used as a virtual structure, the
interaction between spacecraft will cause it to behave more like a rigid body.

Nevertheless, there are drawbacks to this cost function. With the inclusion of the new
term, the topology of the fitness function becomes more complicated. The absolute value
in the denominator leads to cusps and troughs located sporadically throughout the search
space that previously did not exist. Additionally, the new cost function does not allow the
EA to easily find the formations that, although less rigid, might still be of value.

Another problem encountered involves machine precision. The cost function J(p) as
stated contains large terms such as kc = 8.9876 × 109Nm2C−2 and small terms such as
charges that might be as small as fractions of µC. Because of this mixture of extremely
large and small terms, the results of the mathematical operations can be near machine
precision. By normalizing the charge with respect to the Coulomb constant kc and the
mean orbit rate n, the Hill frame accelerations can be reparameterized as follows.

ãxi =
1

mi

N∑
j=1

xi − xj

|ρi − ρj |3
q̃iq̃j + 3xi (25)

ãyi =
1

mi

N∑
j=1

yi − yj

|ρi − ρj |3
q̃iq̃j (26)

ãzi =
1

mi

N∑
j=1

zi − zj

|ρi − ρj |3
q̃iq̃j − zi (27)

where i 6= j, q̃i = qi

√
kc/n and ãi = ai/n2. With this reparameterization, all of the

terms computed are on the order of 100 for formations up to 50 meters in diameter. Also,
because the mean orbit rate n is no longer present in any of the equations, the solutions
are applicable to a circular orbit of any radius. This assumes that the local Debye length
is large enough that the exponential terms in equations 2-4 are negligible.

5 GEO STATIC COULOMB FORMATION SOLUTIONS

The following are examples of various static Coulomb formations in the Hill frame. The
criteria for considering a formation “static” in the Hill frame is that the average acceleration
magnitude of the spacecraft must be a small fraction of the typical Hill acceleration that
a spacecraft might experience. Figure 3(a) displays a typical two-spacecraft formation. As
demonstrated in the earlier example, all two-spacecraft formations must be aligned along
the ôr axis for the equations to decouple and for a solution to be possible. Any off-axis
tilt seen in the figure can be attributed to incomplete convergence of the EA. If the criteria
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for convergence is made more stringent, then the tilt would be less apparent; however. it
would be much more time consuming to find a solution. These simple formations might be
useful as virtual tethers between two spacecraft. Note that a two-spacecraft formation is
only possible in the rotating Hill frame. In free space, non-zero charges would always cause
the crafts to either attract or repel one another and the formation could not remain static.

Figures 3(b)–3(e) show various Coulomb formations that were determined for three space-
craft. There are two linear formations, one aligned with the ôh axis, Figure 3(b), and one
aligned with the ôθ axis, Figure 3(c). These collinear three-satellite static Coulomb forma-
tions have been shown to exist analytically by King and Parker.1,2 Like the two-spacecraft
formations, these formations could also be useful as virtual Coulomb tethers, perhaps even
more so because the magnitude of the inter-craft accelerations, (

∑
j

∑
i ‖aij‖), appears to

be up to seven times stronger than that of the two-spacecraft formations.

Figure 3(d) displays a triangular formation that is perpendicular to the ôθ axis. A solution
was also found that is perpendicular to the ôh axis, (Figure 3(e)). Similar formations
have been analytically determined in Reference 3. However, these are constrained to be
symmetric about the ôr axis, whereas the formations determined by the EA did not require
symmetry. This indicates that a larger class of triangular formations exists than previously
considered.

Figures 4(a) – 4(d) illustrate static Coulomb formation solutions for higher number of
satellites. The formations continue to become more complex with each additional space-
craft. Most of the four-spacecraft formations were shallow, nearly planar pyramids. The
five-spacecraft formations had several different forms, from nearly planar quadrilateral for-
mations with an oppositely charged spacecraft in the center, to formations that appeared
reminiscent of the spacecraft from the classic Atari game, Asteroids. With five-spacecraft
formations, some patterns began to appear. For instance, there is a tendency toward geo-
metric symmetry about the plane perpendicular to the ôh axis as seen in figure 4(a). Also,
there appears to be a balance of charge about the plane perpendicular to the ôr axis. If
there is a group of positively charged spacecraft on one side of this plane, then there will of-
ten be a corresponding negative group on the opposite side, figure 4(b). This becomes more
difficult to observe with an increased number of spacecraft. As the number is increased to
ten and eleven spacecraft, the formations, while retaining some sense of symmetry, tended
to appear more disorganized. This indicates that with an increased number of satellites, it
becomes easier to satisfy the static Coulomb formation constraints, and thus the satellites
can be placed at in more general ways.

Several of the satellite formations possess interesting traits worth investigating. For
example, figure 4(c) shows a planar ring of negatively charged spacecraft with a positively
charged spacecraft at a position near the center of this ring. This resembles a sparse
aperture telescope with a circular array of five collectors and a combiner in the center.
If this formation is an example of a larger family of formations then it could possibly be
reconfigured for optimal interferometry requirements. Additionally, this formation provides
hope that similar formations could be constructed with even more spacecraft. The nine-
spacecraft formation in figure 4(d) is interesting because its spacecraft form two orthogonal
planes alined with the Hill axes, and besides the rogue spacecraft to the side of the formation,
everything appears to be fairly symmetrical. There are many more interesting formations,
most of which again resemble a space fighter from an arcade game. These could potential
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(a) Two Spacecraft Formation

−20
0

20

−20
−10
0

10
20

−20

−10

0

10

20

Orbit Radial [m]
Along-Track [m]

O
u
t-of-P

lan
e

[m
]

ôr
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(b) ôh Aligned Three Spacecraft Formation
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(c) ôθ Aligned Three Spacecraft Formation
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(d) ôθ Perpendicular Triangular Spacecraft
Formation
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ôr

ôθ
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(e) ôh Perpendicular Triangular Spacecraft
Formation

Figure 3: Examples of two and three spacecraft formation that were determined by the EA.
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ôr

ôθ
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(a) Seven Spacecraft Formation
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(b) Six Spacecraft Formation (Balanced
Charges)
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(c) Six Spacecraft Formation (Potential as
Sparse Aperture)
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(d) Nine Spacecraft Formation

Figure 4: Examples of six, seven, and nine spacecraft formation that were
determined by the EA.

be used as models for virtual structures.

A final consideration is given to the amount of computation necessary to find an N -
spacecraft formation using the EA. Figure 5 displays the average number of generations
that are necessary to find a formation with N spacecraft. In this study, the EA evaluates
200 new parameter sets, p, per generation. Notice that the computational effort grows
exponentially with the number of spacecraft included in a formation. Also notice that there
is an unexpected increase in the computational effort required for nine spacecraft. Since
the EA only recorded ten formations per each number of spacecraft, the sample size was
small, and the increase could be due to a single run of the EA that was abnormally time
consuming. Another possibility is that it might simply be more difficult to adequately adjust
the charges and positions of nine crafts so that a static formation is achieved. No matter the
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Figure 5: Computation necessary to realize an N spacecraft formation using the EA

case, the general trend is still an exponential increase with the number of spacecraft in the
formation. If large numbers of spacecraft are to be considered, then computational power
must be greatly increased before a numerical analysis will be possible. This is especially
true if dynamic, repeating Coulomb spacecraft formations are to be investigated.

6 CONCLUSIONS

Coulomb controlled formations offers an alternative to other candidate propulsion systems
because weigh less and are more fuel efficient. Additionally, Coulomb control is essentially
propellantless and is therefore much less likely to damage formation spacecraft due to plume
impingement. If sufficiently developed, this technology could provide a reliable and inex-
pensive method of formation control. The various examples of Hill frame static formations
presented here serve to further encourage the study of Coulomb interaction as a means
of controlling close proximity spacecraft formations. Formations similar to these could be
used for various purposes from sparse aperture telescopes to virtual space structures and
Coulomb tethers.

Although these results are encouraging, much work is needed before this technology is
feasible for actual space application. The formations demonstrated in this paper are consid-
ered to be static, however there is no guarantee that they are stable or even controllable. A
slight perturbation could conceivable send the spacecraft irretrievably into space. Therefore
future research is essential to demonstrate both the stability and/or controllability of these
formations.

Future research will consider dynamic formations that are periodic in nature and expand-
ing the EA to take advantage of parallel processing. Although the formations currently
considered are all static in the Hill frame, it should be possible to have moving formations
with patterns that repeat periodically. As the research moves from static to dynamic forma-
tions and to an increased number of spacecraft, the computational requirements will greatly
increase. Expanding the EA to a distributed computing platform will help accommodate
the demands of future research.
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A STATIC COULOMB FORMATION DATA

This appendix lists the spacecraft formation data that yielded the discussed static Coulomb
formation solutions. Table 1 contains the data that produced Figures 3 and 4. The (xi, yi, zi)
coordinates of each craft are taken in the rotating Hill frame H.

Table 1: Static Coulomb Formation with N Satellites.

Description Sat No. xi [m] yi [m] zi [m] q̃i [C
√

kc
n ]

2 Spacecraft 1 -0.092664 0.011066 17.8917 166.7136
Formation 2 0.092664 -0.011066 -17.8917 136.896
3 Spacecraft Linear 1 -0.023484 -0.075065 0.7652 37.4897
Formation (ôh aligned) 2 -0.024972 -0.51724 16.7249 -206.2658

3 0.048456 0.59231 -17.4901 -266.0775
3 Spacecraft Linear 1 -0.036273 21.4974 -0.26514 -175.3544
Formation (ôθ aligned) 2 0.18339 -0.41802 0.11892 42.0475

3 -0.14712 -21.0794 0.14622 -161.5587
3 Spacecraft Triangular 1 -4.4331 -0.60236 -15.151 -77.022
Formation 2 14.6396 0.1004 3.4265 109.706
(Perpendicular to ôθ) 3 -10.2065 0.50196 11.7245 -237.0545
3 Spacecraft Triangular 1 11.6585 3.0029 -0.12805 105.9299
Formation 2 -7.7367 13.8648 -0.30896 -128.7732
(Perpendicular to ôh) 3 -3.9218 -16.8678 0.43701 -101.1125
7 Spacecraft 1 5.2046 1.2553 7.1177 -34.5258
Formation 2 -0.8901 -19.8049 -0.26195 34.5104

3 -1.4872 12.6487 -0.82082 13.4644
4 -5.6985 1.5323 -6.5856 40.5746
5 1.8194 0.7205 0.31747 -3.997
6 -5.5185 1.7321 6.7684 40.3356
7 6.5702 1.916 -6.5351 -54.7031

6 Spacecraft 1 -3.6757 -8.7775 4.7316 18.6585
Formation 2 -4.9418 14.7365 0.032367 31.8215

3 4.9927 14.9707 -0.31142 -41.7238
4 -5.3036 -5.8118 -3.7998 39.6514
5 4.2763 -10.394 -4.6351 -30.5965
6 4.6521 -4.7239 3.9824 -34.3029

6 Spacecraft 1 -0.30092 10.2766 0.69744 26.2459
Formation 2 -0.44629 -13.1755 7.1652 42.4876

3 1.6249 -1.8444 -0.5891 -30.4786
4 -0.19733 9.4761 -10.2863 43.6042
5 -0.47352 -13.3682 -6.6336 42.4052
6 -0.20681 8.6353 9.6464 24.5486

9 Spacecraft 1 -5.5614 2.5774 -0.27129 -22.9893
Formation 2 4.235 3.3704 -0.42808 -17.4779

3 -0.27082 3.4834 -0.18405 9.2982
Continued on next page
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Table 1 – continued from previous page

Description Sat No. xi [m] yi [m] zi [m] q̃i [C
√

kc
n ]

4 -0.1535 -2.1963 -4.9073 24.1564
5 -0.68204 -10.8544 0.61756 18.562
6 -0.13938 -1.986 0.21305 4.536
7 2.7537 -6.8262 0.27898 -11.1816
8 -0.0029009 14.5789 -0.58875 70.537
9 -0.17873 -2.1472 5.2699 21.4357
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